共查询到20条相似文献,搜索用时 46 毫秒
1.
一种基于多目标优化的遗传规划模型 总被引:1,自引:0,他引:1
遗传规划常因进化过程中层次树的复杂度无节制的增大,导致运行时间过长而难以直接在工程上应用.本文在传统遗传规划中引入多目标优化原理,这种基于多目标优化的遗传规划模型不仅产生精度更高的最优结果,而且提供了一种在随机搜索过程中有效控制树结构长度的方法.通过对符号回归问题的实验验证,得到了较好的结果. 相似文献
2.
预测问题通常涉及相同的输入变量同时预测多个目标变量。当目标变量为二进制时,预测任务被称为多标签分类;当目标变量为实值时,预测任务称为多目标预测。本文提出2种新的多目标回归方法:多目标堆叠(Multi-Target Stacking, MTS)和集成回归链(Ensemble of Regressor Chains, ERC)。灵感来自2种流行的多标签分类方法。MTS和ERC在第一阶段的训练,都将采用基于回归树AdaBoost算法(ART)建立的单目标预测(Single-Target Prediction)模型作为基准方法;在第二阶段的训练,MTS和ERC都通过额外加入第一阶段的目标预测值作为输入变量来扩展第二阶段的输入变量空间,以此建立多目标预测模型。这2种方法都利用目标变量之间的关系,不同的是,ERC除了考虑目标的依赖性关系外还考虑了目标的顺序问题。此外,总结了MTS和ERC这2种方法的缺点,并且对算法进行修改,提出了相应的改进版本MTS Corrected(MTSC)和ERC Corrected(ERCC)。实验结果表明,修改后的回归链ART-ERCC算法在多目标预测问题中表现最好。 相似文献
3.
针对传统多目标回归算法无法处理输入与多输出间的非线性关系,且忽视了数据点在输入与输出之间的结构信息,导致算法泛化性能受限、缺乏稳健性等问题,提出一种基于实例与目标相关性的多目标稀疏回归(multi-target sparse regression with instances and targets correlations,MTR-ITC)算法.首先,通过嵌入潜变量空间来对复杂的输入与输出以及输出间的关联结构解耦,并利用核技巧和稀疏回归学习输入输出间的非线性关系和输出间的相关结构;然后,引入流形正则化项探索不同实例在输入与输出变量间的相关性,确保模型输出与真实结果在局部和全局结构的一致性,以提升模型泛化性能;最后,提出一种交替优化算法来对目标函数进行求解,使其能快速收敛至全局最优.在基准测试数据集上的实验表明,所提算法在不同MTR数据集上均具有较好的测试性能. 相似文献
4.
多目标回归(MTR)是一种针对单个样本同时具有多个连续型输出的回归问题.现有的多目标回归算法都基于同一个特征空间学习回归模型,而忽略了各输出目标本身的特殊性质.针对这一问题,提出基于径向基函数的多目标回归特征构建算法.首先,将各目标的输出作为额外的特征对各输出目标进行聚类,根据聚类中心在原始特征空间构成了目标特定特征空... 相似文献
5.
提出一种基于进化知识融合的多目标人工蜂群算法.首先,采用精英群体知识和种群自身进化知识混合引导引领蜂进化,保持种群的多样性和优异性;然后,将一种融合个体支配关系和种群分布关系的方法引入跟随蜂的概率选择中,合理选择个体进行深度开发以改善算法收敛性能和分布性能;最后,提出一种更为严格的外部档案维护策略以降低外部档案维护成本,提高解集的分布性能.通过求解标准测试函数,并与其他3种多目标优化算法进行比较,仿真结果表明所提出算法具有良好的收敛性能和分布性能,且解集的覆盖范围更广. 相似文献
6.
为提高对硅单晶直径检测图像高亮光环的分割精度, 提出了一种基于多目标人工鱼群算法的二维直方图区域斜分多阈值分割方法.首先设计了一种多目标人工鱼群算法, 并且改进了快速构造Pareto非劣解集的方法, 然后以最大类间方差和最大熵同时作为测度函数, 搜索最优的二维直方图区域斜分分割阈值.仿真结果表明, 所设计的多目标人工鱼群优化算法具有较高的搜索精度, 硅单晶直径检测图像分割实验结果表明, 提出的改进二维直方图区域斜分多阈值分割方法对高亮光环具有较高的分割精度. 相似文献
7.
为克服符号回归问题经典算法具有搜索时间过长和容易陷入局部最优的缺点,提出一种基于蒙特卡洛树搜索的符号回归算法。将符号空间划分为模型空间和系数空间;在深度策略网络指导下通过蒙特卡洛树搜索实现在模型空间内寻找合适数据集特征的公式模型;在此基础上,使用粒子群算法搜索公式模型下的系数空间,得到适应度最高的公式。实验结果表明,与GP算法相比,该算法具有适应度值更低、不易陷入局部最优的特点。 相似文献
8.
9.
求解多目标最小生成树的改进多目标蚁群算法 总被引:1,自引:0,他引:1
多目标最小生成树问题是典型的NP问题。针对此问题,提出一种改进的多目标蚁群算法。为获得更好的非劣前端,通过合理选取多个信息素扩散源与扩散策略来避免其早熟收敛,并引入非支配排序算子,提高种群多样性并避免算法过早陷入局部最优解。对比实验结果表明:对于多目标最小生成树问题,该算法是有效的,不但在求解效率和解的质量方面优于相关算法,而且随着问题规模的扩大,算法仍保持较好的性能。 相似文献
10.
基于改进鱼群算法的多无人机任务分配研究 总被引:3,自引:0,他引:3
多无人机协同任务分配问题是多无人机协同控制的关键,为解决单目标函数构建的任务分配模型不能满足决策者对战场环境大量信息的需求,以最大航程和最长任务执行时间作为多无人机任务分配的两个目标函数,依据多目标优化理论,建立了协同任务分配多目标优化模型.并采用了一种借鉴遗传算法中的变异思想的改进鱼群算法进行求解,得到多无人机任务分配的多目标最优解集,然后根据决策者的偏好选择最佳任务分配方案.最后将上述算法应用于多无人机协同任务分配中并进行了仿真,仿真结果验证了改进鱼群算法的收敛性及有效性,为多无人机协同任务分配优化提供了参考依据. 相似文献
11.
邓绪斌 《计算机应用与软件》2007,24(12):65-67
数据抽取常用正则表达式(RE)来描述数据源.为实现可视化描述,需将RE转换成分析树.但现有基于改写的RE分析树构造方法会破坏数据对象的内在结构,不能用于数据抽取问题.提出了一种无改写的RE分析树构造算法.实验表明,该算法在时空间性能和实用性等方面优于现有RE分析树构造算法. 相似文献
12.
Symbolic regression is a machine learning task: given a training dataset with features and targets, find a symbolic function that best predicts the target given the features. This paper concentrates on dynamic regression tasks, i.e. tasks where the goal changes during the model fitting process. Our study is motivated by dynamic regression tasks originating in the domain of reinforcement learning: we study four dynamic symbolic regression problems related to well-known reinforcement learning benchmarks, with data generated from the standard Value Iteration algorithm. We first show that in these problems the target function changes gradually, with no abrupt changes. Even these gradual changes, however, are a challenge to traditional Genetic Programming-based Symbolic Regression algorithms because they rely only on expression manipulation and selection. To address this challenge, we present an enhancement to such algorithms suitable for dynamic scenarios with gradual changes, namely the recently introduced type of leaf nodes called Linear Combination of Features. This type of leaf node, aided by the error backpropagation technique known from artificial neural networks, enables the algorithm to better fit the data by utilizing the error gradient to its advantage rather than searching blindly using only the fitness values. This setup is compared with a baseline of the core algorithm without any of our improvements and also with a classic evolutionary dynamic optimization technique: hypermutation. The results show that the proposed modifications greatly improve the algorithm ability to track a gradually changing target. 相似文献
13.
14.
15.
Logistics networks could be very fragile in a global environment due to unexpected emergencies such as earthquakes, tsunamis and terrorists attacks. Therefore, the research on emergency logistics systems is extremely significant. The dynamic changes, quick responses and unpredictable events are main features of the location problems in emergency logistics systems, which make them quite different from the traditional logistics networks. The previous single-objective location models and solution algorithms do not capture the new characteristics that arise from the emergency logistics systems. This paper first proposes a new node-weighted bottleneck Steiner tree based multi-objective location optimization model for the emergency logistics systems. Then, a cellular stochastic diffusion search based intelligent algorithm is introduced to solve the proposed model. Under different emergent scenarios, several examples are used to illustrate the application of the proposed model. Numerical experiments show that the proposed approach is effective and efficient for solving the location problem of emergency logistics systems. 相似文献
16.
大多数行业定制软件的漏洞检测较困难,而传统的静态漏洞检测方法会产生很多错误的和虚假的信息。针对函数调用前后存在的漏洞问题,提出了基于上下文无关的自顶向下与自底向上相结合的语法解析树的方法,它能够在对函数内部定义不了解或者部分了解的情况下,解析函数调用前后安全契约规则:前置规则和后置规则。同时通过扩展规则表示的XML文法来表示面向对象下,规则中的属性存在继承关系下的契约规则。实验表明,与同类型安全分析工具比较,该方法具有避免函数重复分析、规则可扩展性良好、尤其在自定义对象类和特定环境下自定义参数准确率高等优点。 相似文献
17.
Dong Qiu Rongwen Dong Shuqiao Chen i Li 《Intelligent Automation and Soft Computing》2018,24(1):147-150
In this paper, we research the optimization problems with multiple Z-number valued objectives.
First, we convert Z-numbers to classical fuzzy numbers to simplify the calculation. A new dominance
relationship of two fuzzy numbers based on the lower limit of the possibility degree is proposed. Then
according to this dominance relationship, we present a multi-objective evolutionary algorithm to
solve the optimization problems. Finally, a simple example is used to demonstrate the validity of the
suggested algorithm. 相似文献
18.
Jeong-Woo Son Tae-Gil Noh Hyun-Je Song Seong-Bae Park 《Engineering Applications of Artificial Intelligence》2013,26(8):1911-1918
Program plagiarism detection is a task of detecting plagiarized code pairs among a set of source codes. In this paper, we propose a code plagiarism detection system that uses a parse tree kernel. Our parse tree kernel calculates a similarity value between two source codes in terms of their parse tree similarity. Since parse trees contain the essential syntactic structure of source codes, the system effectively handles structural information. The contributions of this paper are two-fold. First, we propose a parse tree kernel that is optimized for program source code. The evaluation shows that our system based on this kernel outperforms well-known baseline systems. Second, we collected a large number of real-world Java source codes from a university programming class. This test set was manually analyzed and tagged by two independent human annotators to mark plagiarized codes. It can be used to evaluate the performance of various detection systems in real-world environments. The experiments with the test set show that the performance of our plagiarism detection system reaches to 93% level of human annotators. 相似文献
19.
This paper introduces multi-directional local search, a metaheuristic for multi-objective optimization. We first motivate the method and present an algorithmic framework for it. We then apply it to several known multi-objective problems such as the multi-objective multi-dimensional knapsack problem, the bi-objective set packing problem and the bi-objective orienteering problem. Experimental results show that our method systematically provides solution sets of comparable quality with state-of-the-art methods applied to benchmark instances of these problems, within reasonable CPU effort. We conclude that the proposed algorithmic framework is a viable option when solving multi-objective optimization problems. 相似文献
20.
One of the challenging problems in motion planning is finding an efficient path for a robot in different aspects such as length, clearance and smoothness. We formulate this problem as two multi-objective path planning models with the focus on robot's energy consumption and path's safety. These models address two five- and three-objectives optimization problems. We propose an evolutionary algorithm for solving the problems. For efficient searching and achieving Pareto-optimal regions, in addition to the standard genetic operators, a family of path refiner operators is introduced. The new operators play a local search role and intensify power of the algorithm in both explorative and exploitative terms. Finally, we verify the models and compare efficiency of the algorithm and the refiner operators by other multi-objective algorithms such as strength Pareto evolutionary algorithm 2 and multi-objective particle swarm optimization on several complicated path planning test problems. 相似文献