首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new chitosan molecular‐imprinted adsorbent was prepared from the mycelium of waste biomass. The results showed that an adsorbent using Penicillium chrysogenum mycelium as the core material was better than one derived from peanut coat. The adsorption capacity of the surface‐imprinted adsorbent for Ni2+ was enhanced by increasing the chitosan concentration in the imprinting process. Epichlorohydrin was better than glutaraldehyde as a cross‐linking agent; the optimal imprinted Ni2+ concentration for preparing the surface‐imprinted adsorbent was 2 mg (Ni2+) g?1 of mycelium. The adsorption capacity of the surface‐imprinted adsorbent was 42 mg g?1 (at 200 mg dm?3 initial metal ions concentration) and twice that of the mycelium adsorbent. The surface‐imprinted adsorbent can be reused for up to 15 cycles without loss of adsorption capacity. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
The work presented involved the fabrication and evaluation of an ion‐imprinted azo‐functionalized phenolic resin for selective extraction of Ni2+ ions from aqueous media. The azo‐containing ligand was first synthesized by coupling of a p‐aminophenol diazonium salt with resorcinol. The ligand was coordinated with Ni2+ ion template before condensation polymerization with formaldehyde and resorcinol was performed. The Ni2+ ions were extracted from the crosslinked resin matrix to finally afford the Ni2+ ion‐imprinted Ni‐PARF adsorbent. The synthetic steps were extensively investigated using elemental analysis and Fourier transform infrared, NMR and energy‐dispersive X‐ray spectroscopies. Also, the surface morphologies along with the surface areas of the adsorbent resin were evaluated using scanning electron microscopy and Brunauer–Emmett–Teller techniques, respectively. Batch experiments indicated that the pseudo‐second‐order kinetic equation provided the best fit with the experimentally obtained kinetic data and equilibrium was reached after 40 min. The isotherm studies were also in a good fit with the Langmuir model and the maximum adsorption capacities of Ni2+ ions with respect to both Ni‐PARF and control non‐imprinted C‐PARF adsorbents were around 260 and 100 mg g?1, respectively. In the presence of Co2+, Cu2+, Zn2+ and Pb2+ as competing coexisting ions, the relative selectivity coefficients of Ni‐PARF for Ni2+ were, respectively, 84.91, 44.97, 30.41 and 32.20. Regeneration experiments indicated that after eight adsorption/desorption cycles, the Ni‐PARF adsorbent still maintained around 97% of its initial efficiency. © 2018 Society of Chemical Industry  相似文献   

3.
We developed a simple phase inversion technique to prepare molecularly imprinted membrane (MIM) at room temperature for membrane selective adsorption and separation of methyl p-hydroxybenzoate (M4HB). The prepared SMIP-MIM was characterized by SEM, FT-IR, TGA. Compared with non-imprinted membrane (NIM1-5) adsorbent, SMIP-MIM1-5 adsorbent with high specific surface area and showed higher binding capacity, faster kinetic and better selectively adsorption capacity for M4HB. The maximum isotherm adsorption capacity for M4HB of SMIP-MIM4 was 3.519mg·g?1, and the experimental data was well fitted to the slips model by multiple analysis. The maximum kinetic adsorption capacity and equilibrium adsorption time for SMIP-MIM4 were 1.335mg·g?1 and 160 min, respectively. The mechanism for dynamic adsorption of M4HB onto SMIP-MIM4 was found to follow pseudo-first-order model and pseudo-second-order model. Additionally, the permeability separation factor of SMIP-MIM4 for M4HB compared to a structural analogues methyl 2-hydroxybenzoate (M2HB) could reach 2.847. The adsorption capacity of SMIP-MIM4 for M4HB and M2HB was 0.549mg·cm?2 and 1.563mg·cm?2, respectively. The adsorption behavior of M4HB through SMIP-MIM4 followed the retarded permeation mechanism.  相似文献   

4.
Invertase was immobilized onto the dimer acid‐co‐alkyl polyamine after activation with 1,2‐diamine ethane and 1,3‐diamine propane. The effects of pH, temperature, substrate concentration, and storage stability on free and immobilized invertase were investigated. Kinetic parameters were calculated as 18.2 mM for Km and 6.43 × 10?5 mol dm?3 min?1 for Vmax of free enzyme and in the range of 23.8–35.3 mM for Km and 7.97–11.71 × 10?5 mol dm?3 min?1 for Vmax of immobilized enzyme. After storage at 4°C for 1 month, the enzyme activities were 21.0 and 60.0–70.0% of the initial activity for free and immobilized enzyme, respectively. The optimum pH values for free and immobilized enzymes were determined as 4.5. The optimum temperatures for free and immobilized enzymes were 45 and 50°C, respectively. After using immobilized enzyme in 3 days for 43 times, it showed 76–80% of its original activity. As a result of immobilization, thermal and storage stabilities were increased. The aim of this study was to increase the storage stability and reuse number of the immobilized enzyme and also to compare this immobilization method with others with respect to storage stability and reuse number. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1526–1530, 2004  相似文献   

5.
The performance and economic cost of the removal of phenol with TiO2 photocatalysis, photo‐Fenton reactions, biological aerated filter (BAF), and constructed wetland (CW) reactors has been studied. The BAF achieved complete removal with a maximum phenol concentration of 200 mg·L?1. The BAF‐CW combination provided a phenol‐free effluent with a maximum phenol concentration of 650 mg·L?1. In both cases, a complete detoxification of the treated water was achieved at the concentrations studied. The efficiency of TiO2 photocatalysis was limited to concentrations below 50 mg L?1 to minimize removal reduction and toxicity of the intermediates. Photo‐Fenton was more efficient, but also more expensive because of the high cost of H2O2. The photo‐Fenton‐BAF combination is proposed to be the most suitable one.  相似文献   

6.
BACKGROUND: At concentrations higher than 1 mg L?1, 4‐chlorophenol (4‐CP) is very toxic to living organisms, and if ingested beyond the permitted concentration it causes health disorders such as cancer and mutation. This laboratory study investigates treatment of contaminated water laden with 4‐CP using coconut shell charcoal (CSC) waste. Batch studies were conducted to study the effects of dose, pH, and equilibrium time on 4‐CP removal. To improve 4‐CP removal, surface modification of the adsorbent with TiO2, HNO3, and/or NaOH was undertaken. RESULTS: At an initial 4‐CP concentration of 25 mg L?1 under optimized conditions (dose 13.5 g L?1, pH 2.0; agitation speed 150 rpm and 50 min equilibrium time), the NaOH‐treated CSC demonstrated a greater removal of 4‐CP (71%) than those oxidized with HNO3 (40%) and/or coated with TiO2 (52%). The adsorption capacity of the NaOH‐treated CSC (54.65 mg g?1) was higher than those treated with HNO3 (23.13 mg g?1) or coated with TiO2 (48.42 mg g?1). CONCLUSION: Although treatment results using the NaOH‐treated CSC alone were promising, the treated effluents were still unable to meet the required limit of less than 1 mg L?1. Therefore, subsequent treatments are still required to complement the removal of 4‐CP from the wastewater. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The manipulation of surface wettability has been regarded as an efficient strategy to improve the membrane performances. Herein, the counterion‐switched reversibly hydrophilic and hydrophobic surface of TiO2‐loaded polyelectrolyte membrane are prepared by layer‐by‐layer assembly of poly(sodium 4‐styrene sulfonate) (PSS) and poly(diallydimethyl‐ammoniumchloride (PDDA) containing TiO2@PDDA nanoparticles (NPs) on the hydrolyzed polyacrylonitrile (PAN) substrate membrane. The obtained polyelectrolyte multilayer (PEM) membranes [PEM‐TiO2]4.5+X? (X? = Cl?, PFO? [perfluorooctanoate] etc.) show different hydrophilicity and hydrophobicity with various counterions. The integration of TiO2 NPs obviously improves the wettability and nanofiltration (NF) performance of PEM membrane for (non)aqueous system of dyes (crystal violet, eriochrome black T) with a high recyclability. The highly hydrophilic [PEM‐TiO2]4.5+Cl? (water contact angle [WCA]: 13.2 ± 1.8°) and hydrophobic [PEM‐TiO2]4.5+PFO? (WCA: 115.4 ± 2.3°) can be reversibly switched via counterion exchange between Cl? and PFO?, verifying the surface with a reversible hydrophilic–hydrophobic transformation. For such membranes, the morphology, wettability, and NF performance rely on the loading of TiO2@PDDA NPs and surface counterion. Meanwhile, the motion and interaction of water or ethanol in the hydrophilic or hydrophobic membrane are revealed by low‐field nuclear magnetic resonance. This work provides a facile and rapid approach to fabricate smart and tunable wetting surface for potential utilization in (non)aqueous NF separation.  相似文献   

8.
Poly(N‐isopropylacrylamide‐co‐acrylic acid) (P(NIPAM‐co‐AA)) microspheres with a high copolymerized AA content were fabricated using rapid membrane emulsification technique. The uniform size, good hydrophilicity, and thermo sensitivity of the microspheres were favorable for trypsin immobilization. Trypsin molecules were immobilized onto the microspheres surfaces by covalent attachment. The effects of various parameters such as immobilization pH value, enzyme concentration, concentration of buffer solution, and immobilization time on protein loading amount and enzyme activity were systematically investigated. Under the optimum conditions, the protein loading was 493 ± 20 mg g?1 and the activity yield of immobilized trypsin was 155% ± 3%. The maximum activity (Vmax) and Michaelis constant (Km) of immobilized enzyme were found to be 0.74 μM s?1 and 0.54 mM, respectively. The immobilized trypsin showed better thermal and storage stability than the free trypsin. The enzyme‐immobilized microspheres with high protein loading amount still can show a thermo reversible phase transition behavior. The research could provide a strategy to immobilize enzyme for application in proteomics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43343.  相似文献   

9.
Three novel magnetic adsorbents were synthesized through the immobilization of di-, tri-, and tetraamine onto the surface of silica coated magnetite nanoparticles. The adsorbents were characterized by XRD patterns, FTIR spectroscopy, elemental and thermogravimetric analysis, magnetic measurements, SEM/TEM, EDX spectroscopy, and N2 adsorption/desorption isotherms. Their capacity to remove copper ions from aqueous solutions was investigated and discussed comparatively. The equilibrium data were analyzed using Langmuir and Freundlich isotherms. The kinetics was evaluated using the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The best interpretation for the equilibrium data was given by the Langmuir isotherm for the tri- and tetraamine functionalized adsorbents, while for the diamine functionalized adsorbent the Freundlich model seemed to be better. The kinetic data were well fitted to the pseudo-second-order model. The overall rate of adsorption was significantly influenced by external mass transfer and intraparticle diffusion. It was observed that the adsorption capacity at room temperature decreased as the length of polyamine chain immobilized on the adsorbent surface increased, the maximum adsorption capacities being 52.3 mg g?1 for 1,3-diaminopropan functionalized adsorbent, 44.2 mg g?1 for diethylenetriamine functionalized adsorbent, and 39.2 mg g?1 for triethylenetetramine functionalized adsorbent. The sorption process proved to be highly dependent of pH. The results of the present work recommend these materials as potential candidates for copper removal from aqueous solutions.  相似文献   

10.
This work proposed a synthesis route of ZSM‐5 via the hydrothermal method with premixing in a stirred tank reactor (STR). Effects of various operating conditions, including pre‐mixing time, molar ratio of SiO2/Al2O3, TPAOH (organic template agents) concentration, NaCl (alkali metal cations) concentration, crystallization temperature, and crystallization reaction time, on the average particle size (PS) and particle size distribution (PSD) were investigated. It was found that the pre‐mixing time in the STR significantly affect the formation of proto‐nuclei in premixing process and crystal growth in hydrothermal reaction process, and consequently influence the PS and PSD of the prepared ZSM‐5. ZSM‐5 with good thermal stability, a PS of 380 nm, PSD of 0.17–0.9 µm, pore diameter of 2.31 nm, pore volume of 0.19 cm3 · g?1 and specific surface area of 337.25 m2 · g?1 were obtained under the optimal conditions of a crystallization reaction time of 24 h, a crystallization temperature of 130 °C, a molar ratio of SiO2/Al2O3 of 200, a TPAOH concentration of 3.5 mol · L?1, NaCl concentration of 0.3 mol · L?1, and a pre‐mixing time of 5 h. This work indicated that the operating conditions including premixing time have a significant effect on its PS and PSD.  相似文献   

11.
The structural optimization of TiO2 materials has a significance for improving the electrochemical performance since TiO2 suffers from poor electronic conductivity. For this purpose, ultrathin N‐doped carbon‐coated TiO2 coaxial nanofibers have been designed and synthesized by a facile electrospinning approach. Microstructure analysis indicates that the TiO2 nanofibers can be coated by the ultrathin carbon layers. Electrochemical tests reveal that the rate performance and cycling ability of TiO2@C nanofibers have been enhanced obviously. The TiO2@C6 nanofibers carbonized at 600°C exhibit superior features with a specific discharge capacity of 284 mAh g?1 at a current density of 100 mA g?1 after 100 cycles. Besides improved rate performance of 117 mAh g?1 at a high current density of 2000 mA g?1 and excellent cycling stability with only about 0.008% capacity loss per cycle were also obtained in the sample TiO2@C6 after 500 cycles at the current density of 1000 mA g?1. Such remarkable performance may be ascribed to the unique one‐dimensional nanofibers as flexible carbon matrix.  相似文献   

12.
Production of L ‐methionine by immobilized pellets of Aspergillus oryzae in a packed bed reactor was investigated. Based on the determination of relative enzymatic activity in the immobilized pellets, the optimum pH and temperature for the resolution reaction were 8.0 and 60 °C, respectively. The effects of substrate concentration on the resolution reaction were also investigated and the kinetic constants (Km and Vm) of immobilized pellets were found to be 7.99 mmol dm?3 and 1.38 mmol dm?3 h?1, respectively. The maximum substrate concentration for the resolution reaction without inhibition was 0.2 mol dm?3. The L ‐methionine conversion rate reached 94% and 78% when substrate concentrations were 0.2 and 0.4 mol dm?3, respectively, at a flow rate of 7.5 cm3 h?1 using the small‐scale packed bed reactor developed. The half‐life of the L ‐aminoacylase in immobilized pellets was 70 days in continuous operation. All the results obtained in this paper exhibit a practical potential of using immobilized pellets of Aspergillus oryzae in the production of L ‐methionine. © 2002 Society of Chemical Industry  相似文献   

13.
High‐impact polystyrene (HIPS)/nano‐TiO2 nanocomposites were prepared by surface pretreatment of nano‐TiO2 with special structure dispersing agent (TAS) and master batch manufacturing technology. The results show that when the nano‐TiO2 content is 2%, the notched impact strength, tensile strength, and elastic modulus of HIPS/nano‐TiO2 nanocomposites increased to a maximum. This result indicates that nano‐TiO2 has both toughening and reinforcing effects on HIPS. The heat‐deflection temperature and flame‐retardance of HIPS/nano‐TiO2 nanocomposites are also obviously improved as the nano‐TiO2 content is increased. The nanocomposites manufactured by the two‐step method have better mechanical properties than that made by a one‐step method. HIPS/nano‐TiO2 nanocomposites are also non‐Newtonian and pseudoplastic fluids. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 381–385, 2003  相似文献   

14.
《分离科学与技术》2012,47(5):1157-1173
Abstract

This paper evaluates the application of several biosorbents for Ni removal from aqueous solutions in the absence and in the presence of EDTA. Fixed bed experiments were performed (Ni influent concentration, 2 mg dm?3; EDTA doses, 0, 5, and 10 mg dm?3; pH=7) to study the process feasibility as refining after conventional physicochemical treatment. In absence of EDTA, uptake capacity followed the order peat > Posidonia oceanica > chitosan > chitin ? Scharlau AC. Maximum uptakes of 8.95 mg g?1 and 5.10 mg g?1 were found for peat and Posidonia oceanica, respectively. In the presence of EDTA, removal capacity decreased for all biosorbents; Ni was detected in the effluent from the beginning of the operation, indicating low ability to retain Ni EDTA‐complexes. Activated carbon presented the ability to remove complexed Ni. Peat exhibited the best performance for the treatment of an industrial spill from a metal‐finishing facility, with effluent Ni concentration lower than 0.2 mg dm?3 for more than two weeks of treatment (3500 pore volumes of treated wastewater).  相似文献   

15.
Hybrid nanocomposites of poly(2‐hydroxyethyl methacrylate) (PHEMA) and TiO2 nanoparticles were synthesized via surface thiol‐lactam initiated radical polymerization by following the grafting from strategy. Initially, TiO2 nanoparticles were modified by 3‐mercaptopropyl trimethoxysilane to prepare thiol functionalized TiO2 nanoparticles (TiO2? SH). Subsequently, surface initiated polymerization of 2‐hydroxyethyl methacrylate was conducted by using TiO2? SH and butyrolactam as an initiating system. The anchoring of PHEMA onto the surface of TiO2 nanoparticles was investigated by FTIR, 1H‐NMR, XPS, TGA, and XRD analyses. The experimental results indicated a strong interaction between PHEMA and TiO2 nanoparticles owing to covalent bonding. The TEM and SEM images of PHEMA‐g‐TiO2 showed that the agglomeration propensity of TiO2 nanoparticles was significantly reduced upon the PHEMA functionalization. The molecular weight and polydispersity index of the cleaved PHEMA from the surface of TiO2 nanocomposites were estimated by GPC analysis. An improved thermal property of the nanocomposites was observed from TGA analysis. PHEMA‐g‐TiO2 nanocomposites were found to be highly dispersible in organic solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The nano‐ZnO and nano‐TiO2 were added into chitosan (CS) anion layer to prepare polyvinyl alcohol (PVA) ‐ sodium alginate (SA)/ TiO2‐ZnO‐CS (here, PVA:polyvinyl alcohol; SA:sodium alginate) bipolar membrane (BPM), which was characterized using scanning electron microscopy, atomic force microscopy (AFM), thermogravimetric analysis (TG), electric universal testing machine, contact angle measurer, and so on. Experimental results showed that nano‐TiO2‐ZnO exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano‐TiO2 or nano‐ZnO. The membrane impedance and voltage drop (IR drop) of the BPM were obviously decreased under the irradiation of high‐pressure mercury lamps. At a current density of 60 mA/cm2, the cell voltage of PVA‐SA/TiO2‐ZnO‐CS BPM‐equipped cell decreased by 1.0 V. And the cell voltages of PVA‐SA/TiO2‐CS BPM‐equipped cell and PVA‐SA/ZnO‐CS BPM‐equipped cell were only reduced by 0.7 and 0.6 V, respectively. Furthermore, the hydrophilicity, thermal stability, and mechanical properties of the modified BPM were increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Ni-MOF-74 was prepared by microwave heating and coated with polydimethylsiloxane (PDMS) via vapor deposition. Both the pristine and the PDMS-coated Ni-MOF-74 samples were exposed to moisture in air (relative humidity of 75%) for different periods of time, and their methane storage capacities under 35 bar conditions were measured. The pristine sample had a Brunauer-Emmett-Teller (SBET) surface area of 1,050 m2·g?1, with a CH4 uptake capacity of 113.8 mg·g?1 at 300 K and 35 bar. After exposure to moisture for seven days, the BET surface area and CH4 uptake capacity declined drastically, whereas the PDMS-coated sample maintained its original BET surface area (1,018 m2·g?1) and CH4 uptake capacity (107.7 mg·g?1). After exposure to moisture in air for 30 days, however, even the PDMS-coated sample lost almost 60% of its CH4 storage capacity. All the methane storage capacity data were linearly correlated with the BET surface areas of the Ni-MOF 74 samples.  相似文献   

18.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
An amino‐functionalized nano‐adsorbent (DETA‐MNPs) was prepared by a process involving: (1) synthesis of superparamagnetic Fe3O4 nanoparticles; (2) introduction of amino groups after which ATRP initiator was anchored; (3) grafting of glycidyl methacrylate (GMA) via SI‐ATRP; and (4) ring‐opening reaction of epoxy groups with diethylenetriamine (DETA). The nano‐adsorbent was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM) and applied to remove Cu(II) in batch experiments. The effects of pH, Cu(II) concentrations, solution ionic strength, and contact time were investigated. The results show that the DETA‐MNPs are spherical with cubic spine structure, high saturation magnetization (41.9 emu g?1), and an average diameter of 10 nm. The maximum Cu(II) adsorption capacity achieves 83.33 mg g?1 at pH 5.0 by Langmuir model. The adsorption process is highly pH‐dependent and reaches equilibrium within 20 min. Furthermore, the DETA‐MNPs exhibit excellent dispersibility and reusability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42859.  相似文献   

20.
Adsorption coupled with electrostatic interaction as an immobilization technique is an important microbial cell immobilization technique. Treatment of the polymer matrix with the cationic surface treating agent chitosan for lactic acid production has been studied. Cells of Lactobacillus plantarum NCIM 2084 were immobilized on a polypropylene (PP) matrix treated with different concentrations of chitosan. The biocatalyst adsorbed on the 1.0 g dm?3 chitosan‐treated PP matrix proved to be most effective. Repeated batch fermentation experiments showed that the immobilized biocatalyst could be recycled effectively 11 times. Studies were also carried out in a packed bed reactor with media recirculation. A high productivity of 7.66 g dm?3 h?1 could be obtained with a conversion of 94% and a yield of 97% at an average residence time of 30 h. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号