首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: γ‐Aminobutyric acid (GABA) is a non‐protein amino acid with bioactive functions for human health. Diamine oxidase (DAO, EC 1.4.3.6) is one of the key enzymes for GABA formation. In the present study, this enzyme was purified from 5 day germinated fava bean and its properties were investigated in vitro. Results: The molecular mass of the enzyme estimated by Sephadex G‐100 gel filtration was 121 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) displayed a single band at a molecular mass of 52 kDa. The enzyme had optimal activity at 40 °C and retained its activity after being incubated at 30 °C for 30 min. It showed higher activity at pH 6.5 than at other pH values. The enzyme was significantly inhibited by Mg2+, Cu2+, Fe3+, aminoguanidine, ethylene glycol tetraacetic acid (EGTA), ethylene diamine tetraacetic acid disodium salt (EDTA‐Na2), L ‐cysteine and β‐mercaptoethanol. The Km value of DAO was 0.23 mmol L?1 for putrescine and 0.96 mmol L?1 for spermidine. However, the enzyme did not degrade spermine. Conclusion: DAO from germinated fava bean was purified. The optimal reaction temperature and pH of the enzyme were mild. The enzyme had higher affinity to putrescine than to spermidine and spermine. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Glutamate decarboxylase (GAD) is a useful enzyme whose main function is to catalyse the irreversible α‐decarboxylation of L ‐glutamate to produce γ‐aminobutyric acid. The cheap and abundant rice‐processing by‐product rice bran contains a high amount of GAD, the purification and characterisation of which have not yet been reported. In this study, research on rice bran GAD was initiated. RESULTS: Rice bran GAD was purified to homogeneity via a combined purification protocol of ammonium sulfate fractionation, ion exchange chromatography and two gel filtrations, with a purification fold of 128.6 and an activity recovery of 21.3%. The enzyme was active at pH 5.5 and 40 °C and retained 80% of its original activity in the pH range 5–9 and the temperature range 30–50 °C. GAD activity was significantly enhanced in the presence of Ca2+ but strongly inhibited by Ag+, Hg2+, sodium dodecyl sulfate and CH3COOH. Kinetic determination of the apparent Km for L ‐glutamate and pyridoxal 5′‐phosphate gave values of 27.4 mmol L?1 and 1.16 µmol L?1 respectively. CONCLUSION: Considering that rice bran is cheap and commercially available and that rice bran GAD is relatively stable, the development of cost‐effective rice bran GAD‐related functional foods would seem to be feasible. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
An extracellular α‐l ‐rhamnosidase from Penicillium citrinum MTCC‐3565 has purified to homogeneity from its culture filtrate using ethanol precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The purified enzyme gave a single protein band corresponding to molecular mass of 45.0 kDa in SDS‐PAGE analysis showing the purity of the enzyme preparation. The native PAGE analysis showed the monomeric nature of the purified enzyme. Using p‐nitrophenyl α‐l ‐rhamnopyranoside as substrate, Km and Vmax values of the enzyme were 0.30 mm and 27.0 μm min mg?1, respectively. The kcat value was 20.1 s giving kcat/Km value of 67.0 mm s?1 for the same substrate. The pH and temperature optima of the enzyme were 8.5 and 50 °C, respectively. The activation energy for the thermal denaturation of the enzyme was 29.9 KJ mol?1. The α‐l ‐rhamnosidase was able to hydrolyse naringin, rutin and hesperidin and liberated l ‐rhamnose, indicating that the purified enzyme can be used for the preparation of α‐l ‐rhamnose and pharmaceutically important compounds by derhamnosylation of natural glycosides containing terminal α‐l ‐rhamnose. The α‐l ‐rhamnosidase was active at the level of ethanol concentration present in wine, indicating that it can be used for improving wine aroma.  相似文献   

4.
A cysteine proteinase from sorghum malt variety SK5912 was purified by a combination of 4 M sucrose fractionation, ion‐exchange chromatography on Q‐ and S‐Sepharose (fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 8.4‐fold to give a 13.4% yield relative to the total activity in the crude extract and a final specific activity of 2057.1 U mg?1 protein. SDS—PAGE revealed two migrating protein bands corresponding to apparent relative molecular masses of 55 and 62 kDa, respectively. The enzyme was optimally active at pH 6.0 and 50 °C, not influenced across a relatively broad pH range of 5.0–8.0 and retained over 60% activity at 70 °C after 30‐min incubation. It was highly significantly (P < 0.001) inhibited by Hg2+, appreciably (P < 0.01) inhibited by Ag+, Ba2+ and Pb2+ but highly significantly (P < 0.001) activated by Co2+, Mn2+ and Sr2+. The proteinase was equally highly significantly (P < 0.001) inhibited by both iodoacetate and p‐chloromercuribenzoate and hydrolysed casein to give the following kinetic constants: Km = 0.33 mg ml?1; Vmax = 0.08 µmol ml?1 min?1. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
An aminopeptidase (AP) was partially purified from jumbo squid (Dosidicus gigas) hepatopancreas with 154.24‐fold and yield of 6.15%. The purification procedure consisted of ammonium sulphate fractionation and DEAE‐Sephacel chromatography. The enzyme was approximately 48–53 kDa as estimated by SDS‐PAGE. With l ‐leu‐p‐NA, it had optimum activity at pH 8.0 and 30 °C. The Km and Vmax/Km values of the enzymes for l ‐leu‐p‐NA were 0.326 mm and 2787 at 37 °C, respectively. Activation energy (Ea) of the enzyme was 53.50 kJ M?1.The AP showed activity against seven synthetic substrates: l ‐proline>l ‐methionine>Ac. l ‐γ‐glutamic>l ‐glycine>l ‐leucine>l ‐alanine>l ‐lysine‐p‐NA. The enzyme was strongly inhibited by Bestatin, partially inhibited by a metal‐chelating agent and by PCMB, a cystein protease inhibitor. Zn2+ and (or) Ca2+ seemed to be its metal cofactor(s). Incubation of casein with the partially purified AP resulted in a degree of hydrolysis of 6%.  相似文献   

6.
A protease from sorghum malt variety KSV8–11 was purified by a combination of dialysis against 4 M sucrose, ion‐exchange chromatography on Q‐Sepharose (Fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 5‐fold to give a 14.1% yield relative to the total activity in the crude extract and a final specific activity of 1348.9 U mg?1 protein. SDS‐PAGE revealed a single migrating protein band corresponding to a relative molecular mass of 16 KDa. Using casein as substrate, the purified protease had optimal activity at 50°C and maximal temperature stability between 30°C and 40°C but retained over 64% of its original activity after incubation at 60°C for 30 min. The pH optimum was 5.0 with maximum stability at pH 6.0 but 60% of the activity remained after 24 h between pH 5.0 and 8.0. The protease was inhibited by Ag+, Ca2+, Co2+, Fe2+, Mg2+, iodoacetic acid (IAA) and p‐chloromercuribenzoate (p‐CMB), stimulated by Cu2+, Sr2+, phenylmethylsulfonyl‐fluoride (PMSF) and 2‐mercaptoethanol (2‐ME) while Mn2+ and ethylenediaminetetraacetic acid (EDTA) had no effect. The purified enzyme had a Km of 18 mg·mL?1 and a Vmax of 11.1 μmol · mL?1 · min?1 with casein as substrate.  相似文献   

7.
BACKGROUND: In Tunisia, sardinelle (Sardinella aurita) catches totalled about 13 300 t in 2002. During processing, solid wastes including heads and viscera are generated, representing about 30% of the original raw material. Viscera, one of the most important by‐products of the fishing industry, are recognised as a potential source of digestive enzymes, especially proteases with high activity over a wide range of pH and temperature conditions. This paper describes the purification procedure and some biochemical characterisation of trypsin from S. aurita viscera. RESULTS: Trypsin from the viscera of sardinelle (S. aurita) was purified by fractionation with ammonium sulphate, Sephadex G‐75 gel filtration, Sepharose mono Q anion exchange chromatography, ultrafiltration and a second Sephadex G‐75 gel filtration, resulting in a 5.42‐fold increase in specific activity and 6.1% recovery. The molecular weight of the purified enzyme was estimated to be 24 kDa using size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme showed esterase‐specific activity on N‐α‐benzoyl‐L ‐arginine ethyl ester (BAEE) that was four times greater than its amidase‐specific activity on N‐α‐benzoyl‐DL ‐arginine‐p‐nitroanilide (BAPNA). The optimal pH and temperature for enzyme activity were pH 8 and 55 °C respectively using BAEE as a substrate. The trypsin kinetic constants Km and kcat on BAPNA were 1.67 mmol L?1 and 3.87 s?1 respectively, while the catalytic efficiency kcat/Km was 2.31 s?1 L mmol?1. CONCLUSION: Trypsin was purified from sardinelle (S. aurita) viscera. Biochemical characterisation of S. aurita trypsin showed that this enzyme can be used as a possible biotechnological tool in the fish‐processing and food industries. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
The extracellular α‐l ‐rhamnosidase has been purified by growing a new fungal strain Aspergillus awamori MTCC‐2879 in the liquid culture growth medium containing orange peel. The purification procedure involved ultrafiltration using PM‐10 membrane and anion‐exchange chromatography on diethyl amino ethyl cellulose. The purified enzyme gave single protein band in SDS‐PAGE analysis corresponding to molecular mass 75.0 kDa. The native PAGE analysis of the purified enzyme also gave a single protein band, confirming the purity of the enzyme. The Km and Vmax values of the enzyme for p‐nitrophenyl‐α‐l ‐rhamnopyranoside were 0.62 mm and 27.06 μmole min?1 mg?1, respectively, yielding kcat and kcat/km values 39.90 s?1 and 54.70 mm ?1 s?1, respectively. The enzyme had an optimum pH of 7.0 and optimum temperature of 60 °C. The activation energy for the thermal denaturation of the enzyme was 35.65 kJ?1 mol?1 K?1. The purified enzyme can be used for specifically cleaving terminal α‐l ‐rhamnose from the natural glycosides, thereby contributing to the preparation of pharmaceutically important compounds like prunin and l ‐rhamnose.  相似文献   

9.
A buckwheat acid phosphatase (orthophosphoric‐monoester phosphohydrolase, EC 3.1.3.2) was purified about 250‐fold from nongerminated buckwheat seeds to apparent homogeneity with a recovery of 4% from the acid phosphatase activity in the crude extract. It is the major acid phosphatase among eight different acid phosphatases identified in the crude extract. The purified enzyme behaved as a monomeric protein of molecular mass about 45 kDa. The purified enzyme exhibited a single pH optimum at 5.25. Optimum temperature for the degradation of p‐nitrophenyl phosphate was 50C. The kinetic parameters for the hydrolysis of p‐nitrophenyl phosphate were determined to be KM= 76 μmol L?1 and kcat= 924 s?1 at pH 5.25 and 37C. While the enzyme failed to act on phytate as a substrate, the enzyme exhibited a broad substrate selectivity. The purified enzyme showed no measureable carboxylesterase activity and no divalent metal ion requirement.  相似文献   

10.
Polyphenol oxidase (PPO) from Napoleon grape was isolated using a two-phase partitioning approach with Triton X-114. The enzyme was purified in a latent form and could be optimally activated by the presence of 0.2% of sodium dodecyl sulphate (SDS) at pH 6.0. In the absence of SDS, the enzyme showed maximum activity at acid pH (3.0). The enzyme was kinetically characterized at pH 3.0 and pH 6.0 in the presence of 0.2% of SDS, using 4-tert-butylcatechol (TBC) as a substrate. The Vm/KM ratio showed that Napoleon grape PPO presents greater affinity for TBC at acid pH (0.1 min−1) that at pH 6.0 in the presence of SDS (0.02 min−1). The enzyme was highly heat stable, 80% of activity remaining at 70 °C. Selected inhibitors were also studied, tropolone being the most active with a Ki value of 27 μM at acid pH and pH 6.0 in the presence of 0.2% SDS.  相似文献   

11.
Lysyl oxidase (LOX; E.C.1.4.3.13) was purified from jumbo squid muscle (Dosidicus gigas) with 1900‐fold and yield 1.9%, and characterized for the first time. The purification procedure consisted of fractionation with urea and a combination of size‐exclusion and anion‐exchange chromatography. The enzyme had a molecular weight of 32 kDa, as estimated by SDS‐PAGE. Using a specific LOX substrate (1,5‐diaminopentane), its optimum activity was determined at pH 8.2 and 65 °C. Activation energy (Ea) of the enzyme was 69.94 kJ K?1 mol?1. The enzyme was strongly inhibited by β‐aminopropionitrile fumarate (BAPN), a specific LOX inhibitor. Moreover, purified LOX was able to work at different temperatures (20–90 °C) at pH 8.2. Although further research is needed, the results from this work suggest that based on LOX activity, this enzyme may be of practical use in preventing textural changes in jumbo squid during storage or processing.  相似文献   

12.
Summary

Biomass of the fungus Fusarium proliferatiim was produced and used to obtain a crude extract (FI) of lipoxygenase. The enzyme was further purified by ammonium sulfate precipitation at 40% of saturation (FII). The enzymatic extract (FII) showed its optimum activity at pH 6.0. The apparent K m and V max values for the lipoxygenase (FII) were calculated to be 5.15 × 10?5 M and 1.61 μmol hydroperoxide/mg protein/min, respectively. Enzyme activity remained relatively stable at potassium cyanide concentrations as high as 60 mM. The presence of 5 mM ethylenediaminetetraacetate activated the enzyme by 50%, whereas the use of 1.2 mM hydroquinone resulted in a 2‐fold increase in lipoxygenase activity. The partially purified enzyme (FII) showed a three‐fold enhancement of activity towards linoleic acid compared to linolenic acid as well as mono‐, di‐ and trilinolein.  相似文献   

13.
Polyphenol oxidase (PPO), the enzyme responsible for the postharvest spoilage of fruits, was extracted and purified from Uapaca kirkiana peel and pulp by ammonium sulfate precipitation and dialysis. Further purification of peel PPO was carried out by gel filtration chromatography. Optimum pH values were 7 and 8 for peel and pulp PPO, respectively. The optimum temperatures for peel and pulp PPO were 45 and 35 °C, respectively. Inhibition studies of the PPO enzyme were performed using citric acid, sodium azide, sodium metabisulfite and thiourea. The most effective inhibitors were sodium azide and citric acid for both peel and pulp PPO. Vmax and Km values were 13.63 units min?1 and 4.923 mmol L?1, respectively, for peel PPO and 14.03 units min?1 and 5.43 mmol L?1, respectively, for pulp PPO. Three isoenzymes of Uapaca kirkiana PPO were detected by polyacrylamide gel electrophoresis. One of the isoenzymes could be identified as having a molecular weight of 26 625 Da. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
In this work, polyphenoloxidase (PPO) from Selva strawberry fruit (Fragaria × ananassa, Duch) was extracted, characterised and partially purified. The activity of PPO was analysed in crude extracts obtained from either fresh fruits or acetone powder. The presence of NaCl and Triton X‐100 in the extraction buffer caused a marked increase in enzyme extractability. The enzyme showed an apparent Km value of 11.2 mM with pyrocatechol as substrate. The maximum enzyme activity was observed at 50 °C and pH 5.3–6.0 without SDS and pH 7.2 in the presence of SDS. The presence of SDS increased PPO activity at pH 7.2 but diminished it at pH 6.0. The enzyme showed high thermal stability and maintained activities equal to or greater than 50% of its maximum activity in the 2.6–9.3 pH range. One polyphenoloxidase isoenzyme was detected in crude extracts of all ripening stages, showing an isoelectric point of 7.3. The specific activity of PPO decreased continuously through fruit ripening. Maximum specific activities were found at the ‘small green’ and ‘large green’ ripening stages. A total enzyme extract was partially purified by means of (NH4)2SO4 precipitation and cationic exchange chromatography in an FPLC system. The purification grade achieved was near 25. The partially purified enzyme showed an isoelectric point equal to 7.3 and a molecular mass of 135 ± 4 kDa for the native protein. © 2000 Society of Chemical Industry  相似文献   

15.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

16.
An inhibitory compound acting against rat platelet 12‐lipoxygenase was isolated from the peel of Lumie fruit (Citrus lumia) by activity‐guided separation. It was identified as eriocitrin (eriodictyol 7‐O‐rutinoside) by spectroscopic analyses. Eriocitrin inhibited 5‐lipoxygenase (IC5029.1 µmol L?1) from rat peritoneal polymorphonuclear leukocytes in addition to 12‐lipoxygenase (IC5022.3 µmol L?1). Its aglycone, eriodictyol (5,7,3′, 4′‐tetrahydroxyflavanone), was a much more potent inhibitor of both 12‐lipoxygenase (IC500.07 µmol L?1) and 5‐lipoxygenase (IC500.20 µmol L?1). It also inhibited the production of leukotriene B4 in intact peritoneal polymorphonuclear leukocytes stimulated with calcium ionophore A23187 (IC5012.7 µmol L?1). The distribution of eriocitrin in 39 citrus fruits was investigated by high‐performance liquid chromatography analysis. Lumie, eureka lemon (Citrus limon), Sambokan (Citrus sulcata), Sudachi (Citrus sudachi) and Koji (Citrus leiocarpa) fruits were found to contain high levels of eriocitrin in both peel and juice vesicles. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
A novel α‐L‐rhamnosidase was isolated and purified from Aspergillus oryzae NL‐1. The enzyme was purified 13.2‐fold by ultrafiltration, ion exchange and gel filtration chromatography with an overall recovery of 6.4% and specific activity of 224.4 U/mg, and the molecular mass of its subunit was approximately 75 kDa. Its optimal temperature and pH were 65 °C and 4.5, respectively. The enzyme was stable in the pH range 3.5–7.0, and it showed good thermostability at higher temperatures. The KM, kcat and kcat/KM values were 5.2 mm , 1624 s?1 and 312 s?1 mm ?1 using pNPR as substrates, respectively. Moreover, the enzyme exhibited transglycosylating activity, which could synthesise rhamnosyl mannitol through the reactions of transglycosylation with inexpensive rhamnose as the glycosyl donor. Our findings indicate that the enzyme has potential value for glycoside synthesis in the food industry.  相似文献   

18.
Based on the fluorescence properties of 2,4‐(1H,3H)‐quinazolinedione, a product of the reaction between cyanate and 2‐aminobenzoic acid, a simple, sensitive, selective, and reproducible method for the cyanate analysis in aqueous ethanolic media is proposed. In this method, λexc and λem are 310 and 410 nm, respectively, and the limits of detection and quantification are 2.2 × 10?7 and 6.7 × 10?7 mol/L, respectively. Under optimal conditions (pH = 4.5, 40% ethanol), a concentration of 5.0 × 10?6 mol/L cyanate can be determined in a single measurement, at a 95% level of confidence, with an uncertainty of ± 0.13 × 10?6 mol/L. Cyanide, thiocyanate, chloride, nitrate, and sulfate ions, as well as urea and urethane in concentrations 1 × 103 higher than that of cyanate do not interfere with the measurement. The methodology was applied to cyanate analyses in the different fractions of the sugarcane distillate and the data strongly suggest a correlation between the presence of urea in wine, and the cyanate and ethyl carbamate concentrations in the spirit.  相似文献   

19.
BACKGROUND: The increasing industrial demand for carotenoids has led to growing interest in their bioproduction. The need to reduce production costs has encouraged the use of low‐cost agroindustrial substrates. In this context, this work studied the pretreatment of Mozzarella cheese whey and the use of the pretreated whey as fermentation medium for the bioproduction of carotenoids by Sporidiobolus salmonicolor CBS 2636. RESULTS: Bioproduction was carried out in an orbital shaker using a 10 mL L?1 inoculum, incubation at 25 °C and a stirring rate of 180 rpm for 120 h in a non‐illuminated environment. The carotenoids were recovered using liquid N2 combined with dimethyl sulfoxide for cell rupture and an acetone/methanol mixture (7:3 v/v) for extraction. The maximum concentration of total carotenoids obtained was 590.4 µg L?1 in a medium with 900 g L?1 cheese whey hydrolysate and 4 g L?1 K2HPO4 at 180 rpm, 25 °C and pH 4. CONCLUSION: The use of enzyme‐hydrolysed cheese whey was more effective in carotenoid bioproduction by S. salmonicolor CBS 2636 than the use of acid‐hydrolysed cheese whey. The concentration of total carotenoids obtained with the enzymatic hydrolysate was six times higher than that obtained with the acid hydrolysate. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Soluble acid invertase (SAI) was purified from mango fruits (Mangifera indica L.) by ammonium sulphate fractionation and anion‐exchange chromatography (DEAE‐Sepharose Fast Flow). Molecular mass of the enzyme is 45 kDa estimated by SDS–PAGE. Dynamic light scattering analysis suggests the hydrodynamic radius of SAI distributes from 4 to 20 nm with a peak at 6.68 nm. Transmission electron microscopy shows that SAI is a globulin with diameter of 10–30 nm. Its optimal pH and temperature are 4.0 and 60 °C, respectively. The enzyme is not stable at high temperature (≥60 °C) or in alkaline (pH ≥ 8) environment. Using sucrose as substrate, its KM and Vmax are 25.55 mm and 1.002 mmol min?1 mL?1, respectively. Its circular dichroism spectrum shows a negative band at 220 nm and a positive band at 195 nm, suggesting a β‐sheet structure. The fluorescence spectra reflect that the tryptophan and tyrosine residues of SAI are partially exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号