首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CdS/CdTe solar cells have been prepared by periodic pulse electrodepositionmethod. 10.8% efficient cell was made with open circuit voltage (Voc)≈753mV, short-circuit current (Jsc)≈23.6 mA/cm2 and fill factor (FF)≈0.61. Current-voltage-temperature measurments showed the variation of ideality factor (A) from 1.88 at 344 K to 4.49 at 202 K whereas voltage factor (α) was almost constant above 276 K. The junction transport is possibly dominated by a tunneling mechanism. Capacitance measurements gave the value of diffusion potential as 1.2 eV, ionized charged density as 5.9 × 1015 cm−3 and number of interface states (NIS) as 2.8 × 1011 cm−2 eV−1 at zero volt bias. Measurements of open circuit voltage (Voc) with temperature gave the value of barrier height as 1.42 eV.  相似文献   

2.
Dense CuInSe2 of high quality, prepared by the fusion technique in evacuated quartz ampoule from stoichiometric melt, crystallizes in the chalcopyrite structure. Compositional analysis carried out by secondary ion mass spectrometry (SIMS) and energy dispersive spectroscopy (EDS) indicates a uniform distribution of elements through the depth and a composition close to the stoichiometry. The diffuse reflectance spectrum gives a band gap at 0.94 eV. The electrical conductivity follows an Arrhenius-type law with activation energy of 23 meV in conformity with polarons hopping. Above 320 °C, CuInSe2 undergoes an irreversible oxidation. The thermal variation of the thermopower indicates p-type behavior attributed to copper deficiency and a hole mobility μ300 K of 0.133 cm2 V−1 s−1, thermally activated. In KCl media, the compound exhibits an excellent chemical stability with a corrosion rate of 8 μmol cm−2 month−1. The photo-electrochemical properties, investigated for the first time on the ingots, confirm the p-type conductivity. From the capacitance measurements, the flat band potential (Vfb=−0.62VSCE) and the holes density (NA=4×1017 cm−3) were determined. The valence band, located at 4.43 eV below vacuum, is made up of mainly Se orbital with little admixture of Cu character. The change of the electrolyte causes a variation in the potential Vfb (dVfb/dpH=−0.058 V pH−1) indicating strong OH adsorption. The fill factor in S2− media was found to be 0.54; such result was corroborated by semi-logarithmic plots.  相似文献   

3.
Perovskite-type La0.8Sr0.2ScyMn1−yO3−δ oxides (LSSMy, y = 0.0–0.2) were synthesized and investigated as cathodes for solid-oxide fuel cells (SOFCs) containing a stabilized zirconia electrolyte. The introduction of Sc3+ into the B-site of La0.8Sr0.2MnO3−δ (LSM) led to a decrease in the oxides’ thermal expansion coefficients and electrical conductivities. Among the various LSSMy oxides tested, LSSM0.05 possessed the smallest area-specific cathodic polarization resistance, as a result of the suppressive effect of Sc3+ on surface SrO segregation and the optimization of the concentration of surface oxygen vacancies. At 850 °C, it was only 0.094 Ω cm2 after a current passage of 400 mA cm−2 for 30 min, significantly lower than that of LSM (0.25 Ω cm2). An anode-supported cell with a LSSM0.05 cathode demonstrated a peak power density of 1300 mW cm−2 at 850 °C. The corresponding value for the cell with LSM cathode was 450 mW cm−2 under the same conditions. The LSSM0.05 oxide may potentially be a good cathode material for IT-SOFCs containing doped zirconia electrolytes.  相似文献   

4.
Polycrystalline bulk samples of CuIn1−xGaxSe2 weregrown with nominal x = 0.15, 0.25 and 0.5. Mobility, conductivity and band gap were measured at room and low temperatures. Mobilities for x = 0.21 were several hundred cm2 V−1s−1 at room temperature and for x = 0.15 were 103 cm2 V−1 s−1, all n type. The band gaps were estimated from the spectra of photoelectrochemical cells at room temperature (with 8.5 K photoluminescence estimates shown in brackets), as 1.10 eV (1.14) for x = 0.21, and 1.07 eV (1.093) for x = 0.15. Crystal mechanical properties as regards cracks were not as good as for CuInSe2, using similar growth techniques.  相似文献   

5.
Cd-rich CdxHg1 − xTe films have been electrodeposited under potentiostatic conditions on conducting glass and Ti substrates from an acidic solution containing the respective ions as Cd2+:Hg2+:HTeO2+ = 100:1:2. Six films one after another have been prepared from a single electrochemical cell. EDAX analysis of the air annealed films show decreasing Hg content in the deposit as the number of film preparation increases. SEM analysis indicate undulatory surface with Hg-rich clusters at the top surface. XRD analysis indicate the presence of CdxHg1 − xTe along with . The CdxHg1 − xTe alloy formation have been confirmed from Raman shift measurements which change with composition, x. The as-deposited films are n-type but converts to p-type after air annealing. Spectral response measurements gave band gap values that change with Hg content in the deposit. Band gap values ranging from 1.1 eV to 1.45 eV have been estimated. Photoelectrochemical solar cells using polysulphide electrolyte have been fabricated which gave an open-circuit photovoltage and short-circuit photocurrent, respectively, as 325 mV and 5.5 mA/cm2 under 60 mW/cm2 intensity of illumination.  相似文献   

6.
The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) anodes are modified using Ni(NO3)2 and/or Ce(NO3)3/(Sm,Ce)(NO3)x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (Pmax) at 850 °C is 198 mW cm−2 when dry H2 and air are used as the fuel and oxidant, respectively. When H2 is changed to CH4, the value of Pmax is 32 mW cm−2. After 8.9 wt.% Ni and 5.8 wt.% CeO2 are introduced into the LSCrM anode, the cell exhibits increased values of Pmax 432, 681, 948 and 1135 mW cm−2 at 700, 750, 800 and 850 °C, respectively, with dry H2 as fuel and air as oxidant. When O2 at 50 mL min−1 is used as the oxidant, the value of Pmax increases to 1450 mW cm−2 at 850 °C. When dry CH4 is used as fuel and air as oxidant, the values of Pmax reach 95, 197, 421 and 645 mW cm−2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.  相似文献   

7.
This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1×1014 to 5×1015 e/cm2. The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260°C for 30 min. Four electron traps, Ec−0.24 eV, Ec−0.41 eV, Ec−0.51 eV, Ec−0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing.  相似文献   

8.
The diffusional permeability of I3 ion in acetonitrile in free standing TiO2 membrane with a porosity of 55% was examined. The apparent diffusion coefficient, Dapp at 25°C of the ion was found to be 3.4×10−6 cm2 −1, an order of magnitude smaller than the free diffusion at the same temperature. The temperature dependency of Dapp was measured in the range 0–30°C and analysed in terms of the Walden product. The diffusional activation energy was found to be 13.5 kJ/mol. The parameters of interest for the efficiency of mesoscopic wet solar cells are discussed. A back of an envelope calculation shows that although the obstructed diffusion coefficient of the I3 ion was an order of magnitude smaller than the free diffusion the diffusional flux is still sufficient to meet a current density of 50 mA cm−2. At incident photon flux of 1 kW m−2 and at a photopotential of 0.6 V this would correspond to a solar energy efficiency of approximately 30%.  相似文献   

9.
Nanocrystalline stoichiometric [Mo(S1−xSex)2] thin films were deposited by using arrested precipitation technique (APT) developed in our laboratory. The precursors used for this are namely, molybdenum triethanolamine complex, thioacetamide and sodium selenosulphite; and various preparative conditions are finalised at the initial stages of deposition. Formation of [Mo(S1−xSex)2] semiconducting thin films are confirmed by studying growth mechanism, optical and electrical properties. X-ray diffraction analysis showed that the composites are nanocrystalline being mixed ternary chalcogenides of the general formula [Mo(S1−xSex)2]. The optical studies revealed that the films are highly absorptive (α×104 cm−1) with a band-to-band direct type of transitions and the energy gap decreased typically from 1.86 eV for pure MoS2 down to 1.42 eV for MoSe2. The thermoelectrical power measurement shows negative polarity for the generated voltage across the two ends of semiconductor thin films. This indicate that the [Mo(S1−xSex)2] thin film samples show n-type conduction.  相似文献   

10.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

11.
NiOxHy films were prepared by DC magnetron sputtering in H2/O2 atmosphere. NiOxHy coatings with transparency and high electrochromic efficiency were obtained by changing H2 content. A 60 nm thick NiOxHy film with transmittance of 0.57 (as-deposited state), 0.78 (bleached state) and 0.24 (coloured state) at wavelength of 550 nm was deposited in an atmosphere of H2(60%)+O2(40%). Analysis of infrared spectra (60002400 cm−1) showed that the absorption peaks for bleached and colored states are associated with free ‘OH’ and OH stretching vibrations, respectively. XPS Ni2p core level spectra of colored NiOxHy film exhibited a peak at 856.2±0.2 eV which is attributed to Ni3+. Ni2p core level spectra of the bleached and as-deposited films exhibited two peaks at 856.4±0.2 and 854.6±0.2 eV which are attributed to Ni3+ and Ni2+.  相似文献   

12.
When a CuInS2/CdS solar cell was fabricated by depositing CdS thin film with dopant In of 1.0 at% on ternary compound CuInS2 thin film with the lowest resistivity of 5.59 × 10−2 Ωcm, its best result was as follows: Voc = 461 mV, Isc = 26.9 mA, FF = 0.685, η = 5.66% under the illumination of 100 mW/cm2. And its series resistance and lattice mismatch was 5.1 Ω and 3.2%, respectively.Besides, a 4 layer structure solar cell of -CuInS2/high -CuInS2/high -CdS/low - CdS has been fabricated. When thickness of high - CuInS2 was 0.2 μm, its best result was as follows: Voc = 580 mV, Isc = 30.6 mA, FF = 0.697, η = 8.25%. An its series resistance and lattice mismatch were 4.3 Ω and 2.8%, respectively.  相似文献   

13.
Thin films of tungsten oxide (WO3) were deposited onto glass, ITO coated glass and silicon substrates by pulsed DC magnetron sputtering (in active arc suppression mode) of tungsten metal with pure oxygen as sputter gas. The films were deposited at various oxygen pressures in the range 1.5×10−2−5.2×10−2 mbar. The influence of oxygen sputters gas pressure on the structural, optical and electrochromic properties of the WO3 thin films has been investigated. All the films grown at various oxygen pressures were found to be amorphous and near stoichiometric. A high refractive index of 2.1 (at λ=550 nm) was obtained for the film deposited at a sputtering pressure of 5.2×10−2 mbar and it decreases at lower oxygen sputter pressure. The maximum optical band gap of 3.14 eV was obtained for the film deposited at 3.1×10−2 mbar, and it decreases with increasing sputter pressure. The decrease in band gap and increase in refractive index for the films deposited at 5.2×10−2 mbar is attributed to the densification of films due to ‘negative ion effects’ in sputter deposition of highly oxygenated targets. The electrochromic studies were performed by protonic intercalation/de-intercalation in the films using 0.5 M HCl dissolved in distilled water as electrolyte. The films deposited at high oxygen pressure are found to exhibit better electrochromic properties with high optical modulation (75%), high coloration efficiency (CE) (141.0 cm2/C) and less switching time at λ=550 nm; the enhanced electrochromism in these films is attributed to their low film density, smaller particle size and larger thickness. However, the faster color/bleach dynamics is these films is ascribed to the large insertion/removal of protons, as evident from the contact potential measurements (CPD) using Kelvin probe. The work function of the films deposited at 1.5 and 5.2×10−2 mbar are 4.41 and 4.30 eV, respectively.  相似文献   

14.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

15.
The spectrophotometric properties of I, I2 and the I/I2 mixture were studied in 1,2-dichloroethane (DCE), acetone (AC), acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), tertiary-butanol (t-BuOH), dimethylformamide (DMF), propylenecarbonate (PC), 3-methoxypropionitrile (MePN), dimethylsulfoxide (DMSO), dioxane (DIO) and pyridine (PY) solutions. From the investigation it has been realized that in DCE, I, I2 and I/I2 mixture have the same absorption peak at 500 nm. I gives rise to the absorption spectra at about 220, 290 and 360 nm in t-BuOH and in PY solutions. However, in all other solvents the I generates peaks only around 220 nm. Similarly I2 and the I/I2 mixture in all solvents except DCE have indicated similar absorption peaks around 220, 290 and 360 nm. On the other hand, except in PC and DMF, I2 shows the additional peaks in the range of 380–500 nm which are assigned to the formation of a I2–solvent complex. The peaks around 290 and 360 nm indicate the presence of I3 and around 220 nm is the peak of I. The spectral shift of the I2 solutions in the visible region is interesting and is the core of this report. It points to the importance of donor–acceptor interaction between solvents and iodine. The data obtained in these solvents were well correlated to the donor number (DN) of the solvents. From this correlation the DN of MePN was estimated to 14.6. The absorption peak of I2 in DCE(DN=0.0) is 500 nm and in PY(DN=33.1) is 378 nm. This peak shift due to solvent effects corresponds to an energy difference close to 0.8 eV. The absorption peak shift due to addition of the 0.0080 vol%. PY(1 mM) in 1 mM I2-ACN solutions corresponds to ca. 0.6 eV. The blue shift of I2 absorption in basic solvents indicates the tendency to form a complex. The increase of the efficiency of the dye-sensitized solar cell by addition of PY to I/I3 ACN solution is suggested to be due to the formation of the dipyridine complex, PY2I+. Such complex formation decreases the amount of I2 which is expected to be an electron scavenger. We also propose that the more bulky complex, PY2I+ has a slower kinetics with the conduction band electrons, and thus decrease the losses of photocurrent and photopotentials in the solar cell.  相似文献   

16.
Single phase CuGaS2 thin film with a highest diffraction peak of (1 1 2) at a diffraction angle (2θ) of 28.8° was made at a substrate temperature of 70°C, an annealing temperature of 350°C and an annealing time of 60 min. Second highest (2 0 4) peak was shown at diffraction angle of (2θ) 49.1°. Lattice constant of a and c of that CuGaS2 thin film was 5.37 and 10.54 Å, respectively. The greatest grain size of the thin film was about 1 μm. The (1 1 2) peak of single phase of CuGaS2 thin film at an annealing temperature of 350°C with excess S supply appeared at a little higher about 10% than that of no excess S supply. The resistivity, mobility and hole density at room temperature of p-type CuGaS2 thin film was 1.4 Ω cm, 15 cm2/V s and 2.9×1017 cm−3, respectively. It was known that carrier concentration had considerable effect than mobility on a variety of resistivity of the fabricated CuGaS2 thin film, and the polycrystalline CuGaS2 thin films were made at these conditions were all p-type.  相似文献   

17.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

18.
Al/p-Si/copper phthalocyanine photovoltaic device has been fabricated and characterised by current–voltage and capacitance–voltage measurements. Electrical properties of the device were determined by current–voltage characterizations under dark and illumination conditions. The density distribution of the interface states of the photodiode was found to vary from 8.88×1012 eV−1 cm−2 in Ess-0.54 eV to 4.51×1012 eV−1 cm−2 in Ess-0.61 eV. The device shows a photovoltaic behaviour with a maximum open circuit voltage Voc of 0.16 V and short-circuits current Isc of 0.45 μA under 3500 lux light intensity.  相似文献   

19.
Photovoltaic devices were assembled using a conducting polymer; poly (3-thiophenemalonic acid) sensitized TiO2 electrodes and an electrolyte containing I3/I redox couple. This cell exhibited a short-circuit photocurrent (Jsc) of 6.65 mA cm−2, an open circuit voltage (Voc) of 355 mV and an efficiency of 1.5% under the illumination of 100 mW cm−2 (AM 1.5). Addition of an ionic liquid, 1-methyl 3-n-hexylimidazolium iodide, into the electrolyte led to an improvement in the cell performances, achieving an overall efficiency of 1.8% under the same illumination. The average cell characteristics of the later devices are , with a fill factor of 0.65.  相似文献   

20.
Photosensitive WS2 thin films are obtained by annealing in presence of a crystallization promoter like Ni or Co. Conventional optical and electrical measurements (conductivity, Hall effect, photoconductivity) are completed by various local probe investigations like scanning tunneling microscopy (STM) and conductive atomic force microscopy (AFM). This thorough study clarifies the respective role of the crystallites and the grain boundaries in the macroscopic measurements and gives information on the properties and on the photovoltaic prospect of the films. The optical properties of the thin films are comparable to those of WS2 single crystals, with absorption excitonic peaks of same intensity at 1.94 and 2.36 eV. The films show a p-type behavior with a carrier concentration of p1023 m−3 and a Hall mobility of μH10×10−4 m2 V−1 s−1 at room temperature. The Hall mobility is thermally activated with an activation energy of 60–90 meV. The photoconductivity spectra show the first indirect transition at 1.35 eV and a decrease of the quantum efficiency at the excitonic-transitions energies. The transport in the film plane is mainly governed by the potential barriers at the grain boundaries. Using a conducting AFM, the crystallite edges are shown to be degenerate semiconductors, while STM current–voltage (I–V) spectroscopy indicates that the flat WS2 crystallites have a low density of surface states on the basal planes. Submicron solid-state junctions are fabricated on the film by depositing gold electrodes on single WS2 crystallites (with an electrode surface of 0.2 μm2). Under illumination the p-WS2/Au micro-junctions show open circuit-voltages of up to 520 mV. The collection of photo-generated carriers is limited by recombination at the grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号