首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(ethylene glycol) diacrylate (PEG‐DA) hydrogels have been widely utilized to investigate cell–material interactions and as scaffolds for tissue engineering. Traditionally, PEG‐DA hydrogels are prepared via the UV‐cure of aqueous precursor solutions, but afford a limited range of pore size and interconnectivity that is essential for cellular proliferation and neotissue formation. To overcome these limitations, macroporous PEG‐DA hydrogels are prepared in this study using a combination of solvent‐induced phase separation (SIPS) and a fused salt template. PEG‐DA concentration in the organized fabrication solvent (20, 30, and 40 wt%) and average salt particle size (≈180, ≈270, and ≈460 μm) are varied and the resulting hydrated hydrogel morphology, swelling, mechanical properties, and degradation are characterized. These templated SIPS PEG‐DA hydrogels broaden PEG‐DA hydrogel properties and, in some cases, afford a series of compositions whose properties are decoupled.

  相似文献   


2.
3.
The drug release capabilities of synthetic bone scaffolds have often been overlooked. In this study novel poly(ethylene) glycol and beta-tricalcium phosphate hydrogel composites were photopolymerized and evaluated in terms of mechanical strength, bioactivity, antimicrobial release profile, and the efficacy of released antimicrobials. Young's modulus values ranged between 4.36 and 8.70 MPa. This increase was associated with the physical bonding interaction between polymer and bioceramic. Bioactivity was confirmed by the formation of globular crystals. Drug release studies showed the diffusion of vancomycin from hydrogel composites can be controlled by the hydrogels’ three-dimensional structure. Moreover, vancomycin loaded samples showed activity against Staphylococcus aureus.  相似文献   

4.
The fabrication of tissue engineering scaffolds based on the polymerization of crosslinked polylactide using leaching and batch foaming to generate well‐controlled and interconnected biodegradable polymer scaffolds is reported. The scaffold fabrication parameters are studied in relation to the interpore connectivity, pore morphology, and structural stability of the crosslinked PLA scaffold. In vitro cell culture and in vitro degradation are used to analyze the biocompatibility and biodegradability of the scaffolds. The new crosslinked PLA thermoset scaffolds are highly suitable for bone tissue engineering applications due to their complex internal architecture, thermal stability, and biocompatibility.

  相似文献   


5.
In an effort to create an in situ physically and chemically cross‐linked hydrogel for in vivo applications, N‐isopropylacrylamide (NIPAAm) was copolymerized with poly(ethylene glycol)‐monoacrylate (PEG‐monoacrylate) and then the hydroxyl terminus of the PEG was further modified with acryloyl chloride to form poly(NIPAAm‐co‐PEG) with acrylate terminated pendant groups. In addition to physically gelling with temperature changes, when mixed with a multi‐thiol compound such as pentaerythritol tetrakis 3‐mercaptopropionate (QT) in phosphate buffer saline solution of pH 7.4, this polymer formed a chemical gel via a Michael‐type addition reaction. The chemical gelation time of the polymer was affected by mixing time; swelling of the copolymer solutions was temperature dependant. Because of its unique gelation properties, this material may be better suited for long‐term functional replacement applications than other thermo‐sensitive physical gels. Also, the PEG content of this material may render it more biocompatible than similar HEMA‐based precursors in previous simultaneous chemically and physically gelling materials. With its improved mechanical strength and biocompatibility, this material could potentially be applied as a thermally gelling injectable biomaterial for aneurysm or arteriovenous malformation (AVM) occlusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Despite excellent processing and biological properties of gelatin for use as a cell carrier, none of the gelatin‐based hydrogel cell carriers reported to date offer all characteristics including quick formation, injectability, self‐healing, and durability, which are simultaneously required for an ideal system. Here, a gelatin‐based hydrogel with dynamic Schiff base linkages, so‐called “dynamic hydrogel,” as an injectable cell carrier consisting of gelatin and amylopectin multiple aldehyde (AMPA), with all the required characteristics is reported. Biocompatibility and osteoinductivity of the hydrogel are verified through the culture of human bone marrow‐derived mesenchymal stem cells (hBMSCs). As live/dead results show, hBMSCs are alive and highly viable ≈85–90% within the hydrogel after 5 days. According to bromodeoxyuridine cell proliferation assay, a significant increase in the number of the cells seeded in the hydrogel confirms its clinical significance for cell therapy. Most importantly, histological visualization using Mason's Trichrome staining indicates secretion of extracellular matrix around the cells loaded in the hydrogel and also expression level evaluation of the crucial osteogenic markers, confirms that the hydrogel can provide osteoinductive support for osteocyte differentiation of hBMSCs after 14 days. Therefore, this hydrogel provides more progress on the path toward bone tissue engineering and further treatment of bone diseases.  相似文献   

7.
A bottom‐up approach is taken to confer multidimensional structure to conductive polymers by attaching thiophene monomers to peptides predicted to self‐assemble into a biomimetic, fibrous nanostructure. A library of 12 peptides containing covalently attached thiophene monomers are synthesized. Peptide sequences capable of robust self‐assembly and hydrogel formation in aqueous media are further polymerized in situ and the physical and electrical properties are characterized. The resulting hybrid materials have conductivities in the range of 10?2 to 10?3 S cm?1 and possess moduli in the range of several tissue types, making them potential candidates for use in tissue engineering and bioelectronic applications.  相似文献   

8.
3D printing is an attractive method to accurately construct artificial organs or alternative materials with complicated structures and functional performance. Naturally derived hydrogels have emerged as promising materials for the preparation of biomimetic 3D organization or scaffolds by 3D printing due to their good biocompatibility, high water content, and fascinating 3D network. However, the poor printing properties and weak structural stability of naturally derived hydrogels limit their applications. In this study, photopolymerizable hydrogels are designed based on maleic chitosan (MCS) and thiolated sodium hyaluronate (SHHA). The Michael addition between MCS and SHHA improves the viscosity of the mixed solution. Moreover, it benefits the 3D printing process, followed by photopolymerization (acrylate-thiol step-chain polymerization and acrylate–acrylate chain polymerization) to form a stable covalent network rapidly. The rheological property, swelling behaviors, microstructure, and in vitro degradation are tuned by adjusting the molar ratio of the thiol group and acrylate group. In addition, MCS/SHHA hydrogel scaffolds with good accuracy and enhanced structural stability are prepared using extrusion-based 3D printing and photopolymerization technology. The hydrogels display excellent cytocompatibility and can support adherence of L929 cells, which can be used as prospective materials for tissue engineering applications.  相似文献   

9.
Biocompatible cellulose‐based aerogels composed of nanoporous struts, which embed interconnected voids of controlled micron‐size, have been prepared employing temporary templates of fused porogens, reinforcement by interpenetrating PMMA networks and supercritical carbon dioxide drying. Different combinations of cellulose solvent (Ca(SCN)2/H2O/LiCl or [EMIm][OAc]/DMSO) and anti‐solvent (EtOH), porogen type (paraffin wax or PMMA spheres) and porogen size (various fractions in the range of 100–500 μm) as well as intensity of PMMA reinforcement have been investigated to tailor the materials for cell scaffolding applications. All aerogels exhibited an open and dual porosity (micronporosity >100 μm and nanoporosity extending to the low micrometer range). Mechanical properties of the dual‐porous aerogels under compressive stress were considerably improved by introduction of interpenetrating PMMA networks. The effect of the reinforcing polymer on attachment, spreading, and proliferation of NIH 3T3 fibroblast cells, cultivated on selected dual‐porous aerogels to pre‐evaluate their biocompatibility was similarly positive.  相似文献   

10.
Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.  相似文献   

11.
An asymmetric tandem Michael addition–lactonization between ortho‐nitrovinylphenols and azalactones was investigated for constructing 3,4‐dihydrocoumarin backbones with a quaternary amino acid moiety. Under the catalysis of the chiral squaramide derived from L ‐tert‐leucine, a wide range of substituted (E)‐2‐(2‐nitrovinyl)phenols and azalactones were well tolerated in this tandem reaction to provide the corresponding biologically significant 3,4‐dihydrocoumarin derivatives in excellent yields with high levels of diastereo‐ and enantioselectivity.

  相似文献   


12.
Novel organic solvent free micro-/nano-fibrillar composite scaffolds have been manufactured using poly(L-lactide) and glycol-modified poly(ethylene terephthalate) to evaluate cell growth potential on the nanoporous networks. The authors describe a method for producing nanoporous scaffolds from polymer blends and highlights some limitations and inaccuracies when measuring mechanical properties of fibrillar porous structures. It illustrates the importance of determining the actual cross-sectional surface area of the load resisting fibers rather than using the simple geometrical area if properties are to be determined accurately. Cellular-biocompatible testing with a mouse pre-osteoblastic (early bone-forming cells) cell line shows promise, with a live monolayer of cells present on the biomaterial after 7–10 days of culture. In addition, scaffolds have also been manufactured by using the traditional electrospinning method and their cyto-biocompatibility compared to the micro-/nano-fibrillar composite scaffolds, employing cell attachment and morphology studies. Some scaffold manufacturing issues have also been identified and discussed in relation to improved cell growth.  相似文献   

13.
In this study, polyvinyl alcohol (PVA) fibers were modified through an effective cross linking method. Adequate porosity and surface area are widely recognized as important parameters in the design of scaffolds for tissue engineering and therefore measurement of porosity is very important. Herein, porosity measurement of various surface layers of scaffold was done through a new method, and image analysis was used for this purpose. Scanning electron microscopy micrographs of nanofibrous scaffolds were converted to binary images using different thresholds and porosity of scaffold was measured in various layers. In addition, for ascertaining of cross linking of the PVA nanofibrous scaffolds, Fourier transform infrared spectroscopy analysis was employed. Also, the in vitro biodegradability of the nanofibrous scaffold was evaluated. The PVA crosslinked nanofibrous scaffold was found to exhibit the most balanced properties to meet all the required specifications for nerve tissue and was used for in vitro culture of nerve stem cells (PC12 cells). Finally, the results of the swelling behavior of the samples revealed that the cross linked PVA scaffold has a strong swelling about 450%.  相似文献   

14.
A mixture of flammable organic solvent, alkali metal salt, and nonflammable room temperature ionic liquid has been used as a new type of electrolyte. A novel microporous polymer electrolyte based on poly(vinylidene fluoride), i.e., PVDF, and poly(ethylene glycol), i.e., PEG, was prepared by a simple phase‐inversion technique. The mixed electrolyte was observed to be nonflammable at ionic liquid contents of 60 vol % or greater. The viscosity (range, 0.98–30.5 mPa s) and conductivity (range, 9.9 to 22.25 mS cm?1) of the mixed electrolyte were discussed. The porosity, solution uptake, and conductivity mechanism of polymer membranes also were discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Despite the fact that the field of tissue engineering has had considerable advances over the past two decades, a series of unsolved problems still remain. Vascularization is one of the most important factors that greatly influence the function and size of the engineered scaffolds, which limits the clinical applications. In this work, a facile extracted molding method is presented for fabricating bulk tissue scaffolds with spatial networks. Briefly, the branched templates are designed, coated with paraffin on the surface, immersed into the mixture of microbial transglutaminase and gelatin, and extracted from fully enzymatic cross‐linking gelatin. The perfusion test is done and the mechanical properties of the scaffolds are investigated. Furthermore, in vitro and in vivo experiments demonstrate the nontoxicity and biocompatibility of the materials and fabrication process. Thus, this approach has great potential to overcome the challenge of rapid oxygen and nutrient delivery to engineered vascularized tissues implanted in vivo, opening the way to clinical applications.  相似文献   

16.
Self‐healable hydrogels are promising soft materials with great potential in biomedical applications due to their autonomous self‐repairing capability. Although many attempts are made to develop new hydrogels with good self‐healing performance, to integrate this characteristic along with other responsive multifunctions into one hydrogel still remains difficult. Here, a self‐healable hybrid supramolecular hydrogel (HSH) with tunable bioadhesive and stimuli‐responsive properties is reported. The strategy is imparting graphene oxide (GO) nanosheets and quadruple hydrogen bonding ureido‐pyrimidinone (UPy) moieties into a thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) polymer matrix. The obtained GO–HSH hydrogel shows rapid self‐healing behavior and good adhesion to various surfaces from synthetic materials to biological tissue. In addition, doxorubicin hydrochloride (DOX) release profiles reveal the dual thermo‐ and pH‐responsiveness of the GO–HSH hydrogel. The DOX‐loaded hydrogel can further directly adhere to titanium substrate, and the released DOX from this thin hydrogel coating remains biologically active and has high capability to kill tumor cells.  相似文献   

17.
Stereochemically inert and positively charged chiral complexes of cobalt(III) prepared from Schiff bases derived from chiral diamines and salicylaldehydes were shown to be efficient catalysts of the benchmark asymmetric phase‐transfer Michael addition of nine activated olefins to O’Donnell’s substrate. The reaction products had enantiomeric purities of up to 96%. DFT calculations were invoked to rationalize the stereochemistry of the addition.

  相似文献   


18.
An asymmetric domino nitro‐Michael/Horner–Wadsworth–Emmons (HWE) reaction involving α,β‐unsaturated aldehydes and nitro phosphonates has been developed, which gave 4,5‐disubstituted cyclohexenecarboxylates with high stereoselectivities (dr up to >20:1, ee 83–92%) in good yields (44–76%). Furthermore, using this methodology as a key step, a short and practical synthesis of pharmaceutically useful compounds (such as the dipeptidyl peptidase IV inhibitor ABT‐341 and an influenza neuraminidase inhibitor) has also been accomplished.  相似文献   

19.
Gum polysaccharides are one of the most abundant bio‐based polymers. They are generally derived from plants as exudates or from microorganisms and have diverse applications in many industries, especially in the food industries where they are used as emulsifiers and thickeners. In their natural form, gum polysaccharides have poor mechanical and physical properties; therefore, they are frequently modified with various synthetic monomers such as acrylamide and acrylic acid using graft copolymerization. Graft copolymerization is one of the most trusted and widely used synthetic methods for the modification of gum polysaccharides. Gum polysaccharides modified in this way have improved mechanical and physicochemical properties. Furthermore, gum polysaccharides contain a variety of functional groups, for example, carboxylic acid and hydroxyl groups; therefore, they have been used extensively as adsorbents for the removal of different impurities from wastewater such as toxic heavy metal cations and synthetic dyes. Here, the chemical and physical properties of gum polysaccharides, different methods of graft copolymerization, and the use of graft copolymer gum‐polysaccharide‐based hydrogels are reviewed in detail for the removal of toxic heavy metal cations and synthetic dyes from aqueous solutions.

  相似文献   


20.
Here, the design of an in situ‐forming injectable hydrogel is reported based on pH‐ and temperature‐responsive copolymers finely engineered with heparin for the sustained delivery of bioactive factors. In order to develop such heparinized injectable hydrogels, pH‐ and temperature‐responsive copolymers based on poly(ethylene glycol) and poly(urethane sulfamethazine) (PEG‐PUSSM) are synthesized and acrylated, and subsequently coupled with thiolated heparin through Michael‐addition reaction. The content of heparin in the bioconjugates (Hep‐PUSSM) is finely tuned to control the release of heparin‐binding bioactive factors. The free‐flowing bioconjugate sols at room temperature transform to stable viscoelastic gel in physiological conditions, indicating that heparin modification does not affect the sol–gel transition. The subcutaneous administration of bioconjugate sols to the dorsal‐region of Sprague‐Dawley rats forms a hydrogel depot and shows controlled degradation. The bioconjugates effectively bind with bioactive factors (VEGF) through simple mixing, and the release is controlled over a period of 4 weeks without an initial burst. As a result, the implantation of VEGF‐loaded bioconjugate gel induces angiogenesis throughout the hydrogel network. The tunable engineering of the injectable hydrogel by heparinization with independent controllable physical properties sustains the release of bioactive factors, indicating that it may be a promising platform for the delivery of bioactive factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号