首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using a technique called solution blow spinning, polyurethane–carbon nanotube‐based composite nanofibers are fabricated. These composite nanofibers exhibit uniform diameter, even with increasing polyurethane density, with the use of a dual‐solvent mixture during spinning. It is possible to produce the fibers at a high production rate even after the addition of a large amount of carbon nanotubes with a uniform size distribution of 300–400 nm. In addition, for composites with 3 wt% carbon nanotubes, the tensile strength, elongation, and elastic strain energy increase to 102, 166, and 167%, respectively, compared to pure PU nanofibers. The thermal stability improves as well. The prepared composite nanofibers could potentially be used as an inter‐reinforcing agent in carbon‐fiber‐reinforced plastics and as a buffer, and in the biomedical field.

  相似文献   


3.
The development of a conductive fiber with flame resistance is an urgent concern particularly in national defense and other specialized fields. Aramid fibers (para‐ or meta‐) exihibit high strength and excellent fire resistance. Electroless silver plating on para‐aramid fibers and growth morphology of silver deposits was investigated in the present work. The surface of para‐aramid fibers was roughened using sodium hydride/dimethyl sulfoxide to guarantee successful electroless plating. Two complexing agents (ethylene diamine/ammonia) and two reducing agents (glucose/seignette salt) were used for the electroless silver plating bath design. Structure and properties of the resulting silver‐deposited para‐aramid fibers were evaluated based on scanning electron microscopy, silver weight gain percentage calculation, electrical resistance measurement, crystal structure analysis, and mechanical properties test. The results showed that a higher silver weight gain was advantageous to the improvement of conductivity for the silver‐deposited para‐aramid fibers. The obtained silver deposit was homogenous and compact. Electroless silver‐plating deposits were considered to be three‐dimensional nucleation and growth model (Volmer–Weber). Black, silver gray, and white deposits appeared sequentially with progressive plating. The breaking strength of silver‐deposited para‐aramid fibers remained at value up to 44 N. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Morphology, crystallinity, thermal, and mechanical properties of nanofibrous mats are known to highly affect the behavior of these materials in desired applications. In this study, multiple characteristics of poly(lactic acid) (PLA) nanofibrous mats prepared from plasma‐treated pre‐electrospinning solutions are studied as a function of various plasma operational parameters. X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, X‐ray photoelectron spectroscopy, scanning electron microscopy, and tensile tests are performed. In addition, the pristine and plasma‐treated PLA solutions are examined with size exclusion chromatography to study the effect of the conducted pre‐electrospinning plasma treatments (PEPT) on the molecular weight of PLA. Aging analysis of the pristine and plasma‐treated solutions is also performed by evaluating the viscosity, conductivity, surface tension, and pH during an aging period of 10 days. To investigate if the results are only affected by the plasma treatment or also affected by the electrospinning, pristine and plasma‐treated PLA cast layers are also analyzed. The results reveal that PEPT preserved the surface chemical composition of the nanofibers and the molecular weight distribution of PLA, while morphology and mechanical properties of the nanofibers are considerably enhanced. Moreover, plasma‐treated polymer solutions resulted in the formation of nicely elongated nanofibers up to 4 days after plasma treatment.  相似文献   

5.
Polycarbonate (PC) nanofibers are prepared using the air blowing‐assisted electrospinning process. The effects of air blowing pressure and PC solution concentration on the physical properties of fibers and the filtration performance of the nanofiber web are investigated. The air blowing‐assisted electrospinning process produces fewer beads and smaller nanofiber diameters compared with those obtained without air blowing. Uniform PC nanofibers with an average fiber diameter of about 0.170 μm are obtained using an applied voltage of 40 kV, an air blowing pressure of 0.3 MPa, a PC solution concentration of 16%, and a tip‐to‐collection‐screen distance (TCD) of 25 cm. The filtration efficiency improvement of the air blowing‐assisted electrospun web can be attributed to the narrow distribution of fiber diameter and small mean flow pore size of the electrospun web. Performance results show that the air blowing‐assisted electrospinning process can be applied to produce PC nanofiber mats with high‐quality filtration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Summary: Novel block copolymers containing aromatic polyamide (aramid) and fluoroethylene segments were synthesized by a two‐step solution polycondensation. This synthetic method could control the chain‐length of aramid segments and these copolymers could have high structural regularity. The number‐average molecular weight ( ) of one of these polymers is over 2.0 × 104. Incorporating fluoroethylene segments improves the solubility of the resulting polymer compared with conventional aramids.

The synthesis of the fluoroethylene‐aramid block copolymers.  相似文献   


7.
8.
9.
Li6Zr2O7 nanofibers were synthesized by a simple electrospinning technique. The thermal decomposition behavior, crystal structure, micromorphology, and electrical conductivity of the as‐prepared Li6Zr2O7 nanofibers were characterized. The results show that Li6Zr2O7 nanofibers were of pure phase after calcined at 750°C for 1 h. In addition, the as‐prepared Li6Zr2O7 nanofibers reveal high conductivity in the measured temperature region, which can be attributed to the huge surface and nanosize effect of the nanofiber electrolyte. Moreover, we provide a general method to improve the conductivity of Li‐ion solid electrolyte.  相似文献   

10.
Poly(lactic acid) fiber was prepared by dry‐jet‐wet spinning of the polymer from chloroform solution and with methanol as the precipitating medium. The as‐spun fiber was subsequently made into high strength fiber by two‐step process of drawing at a temperature of 90°C and subsequent heat setting in the temperature range of 120°C. The draw ratio had significant influence on the crystallinity and the tensile strength of the fiber. The fiber with the tenacity of 0.6 GPa and modulus of 8.2 GPa was achieved at a draw ratio of 8. The differential scanning calorimetry revealed an increase in the glass‐transition temperature with the increase in the draw ratio, which suggests the orientation of chains during the drawing process. The surface morphology of the filament as revealed by scanning electron microscopy shows that fibers are porous in nature, but a significant reduction in the porosity and pore size of the fiber was observed with the increase in the draw ratio. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1239–1246, 2006  相似文献   

11.
12.
13.
Continuous and uniform yarns of thermoplastic nanofibers were prepared via direct melt extrusion of immiscible blends of thermoplastic polymers with CAB and subsequent extraction removal of CAB. Ratios of thermoplastic/sacrificial polymers, melt viscosity, and interfacial tensions affect the formation of nanofibers. Dominating sacrificing polymer content in the blends and low interfacial tensions between thermoplastic polymer and CAB are two key factors. This fabrication process possesses features of high productivity, versatility of thermoplastics, controllability, and environment friendliness in manufacturing thermoplastic nanofibers.

  相似文献   


14.
15.
Sugarcane bagasse, a cheap cellulosic waste material, was investigated as a raw material for producing lyocell fibers at a reduced cost. In this study, bagasse was dissolved in N‐methylmorpholine‐N‐oxide (NMMO) 0.9 hydrate, and fibers were prepared by the dry jet‐wet spinning method with coagulation in an aqueous NMMO solution. The effects of NMMO in 0 to 50% concentrations on the physical properties of fibers were investigated. The coagulating bath contained water/NMMO (10%) solution produced fiber with the highest drawability and highest physical properties. The cross‐section morphology of these fibers reveals fibrillation due to the high degree of crystallinity and high molecular orientation. In the higher NMMO concentrated baths (30 to 50%), the prepared fibers were hollow inside, which could be useful to make highly absorbent materials. The lyocell fibers prepared from bagasse have a tensile strength of 510 MPa, initial modulus of 30 GPa, and dynamic modulus of approximately 41 GPa. These properties are very comparable with those of commercial lyocell fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
17.
Polyvinylidene fluoride (PVDF) is a piezo‐polymer which among its crystalline phases, the β‐phase has been researched for the improvement of piezoelectric properties. In this study, to improve the β‐phase contents and thereby the piezoelectric response of the polymer, the effect of adding self‐synthesized ionic liquid surfactant (ILS) in PVDF nanofibers is studied. This material is added in different weight percentages into the PVDF solution and the nanofibers are produced by electrospinning to prepare active piezoelectric thin layers. SEM, XRD, FTIR, and piezo‐tests are employed for assessing the effect of the ILS on the enhancement of β‐phase in electrospun nanofibers and their piezoelectric performance. The results indicate ≈98.6% β‐phase formation in the sample containing 4 wt% ILS and in comparison with the pure nanofibers, the output voltage and its power density are improved 186.9% and 275%, respectively. Considering the results, it is suggested that the ILS can improve the piezoelectric response of the polymer in the fabricated structure by simple mixing in solution compared to other additives.  相似文献   

18.
Poly(4,4′‐diphenylsulfone terephthalamide) referred to as all para‐position polysulfonamide (all para‐position PSA) is a special kind of PSAs, copolymer s of 3,3′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylsulfone, and terephthaloyl chloride. However, with the increasing para‐structure content in the PSAs, the PSA shows very poor solubility in common amide‐type polar aprotic solvents and cannot be used for wet spinning. In this article, it was found that all para‐position PSA can be easily dissolved in N,N‐Dimethylacetamide (DMAc)/LiCl system, and then the all para‐position PSA fiber was prepared for the first time by wet spinning. The properties of all para‐position PSA pulps and fibers were investigated via Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscopy, thermal gravimetric analysis, dynamical mechanical analysis, X‐ray diffraction (XRD), and tensile strength testing. The tensile strength, elongation at break, and crystallinity of the resulting fiber were 4.4 cN/dtex, 15.9%, and 33.53%, respectively. The results indicated that all para‐position PSA fiber was a high‐temperature resistance fiber with better mechanical properties than common PSA fiber. The improved tensile strength of the fiber will expand its applications and may take place of Nomex in certain fields and become a new generation of flame retardant and high‐temperature resistant material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
20.
BACKGROUND: Wide bandgap semiconducting polymers are of great interest in the development of organic and polymeric emissive materials for display purposes since they can be used to generate light of all colors either by irradiation of luminescent dyes or by energy transfer to emissive dopants. The aim of the present work is to construct new fluorene‐based semiconducting polymers with a wide bandgap. RESULTS: A novel polyfluorene derivative, poly[(9,9‐dihexyl‐2,7‐fluorene)‐alt‐(5,7‐dihydrodibenz[c,e]oxepin)], with a wide bandgap, was synthesized by connecting rigidly twisted biphenyl monomers with dihexylfluorene via para‐linkages and it was compared with poly[(9,9‐dihexyl‐2,7‐fluorene)‐alt‐(spirocyclohexane‐1,6′‐dibenzo[d,f][1,3]dioxepin)], which has meta‐linkages. Both polymers emit in the ultraviolet and blue regions. Electronic spectral absorption data and electrochemical measurements demonstrate that ca 40° torsion angle of the biphenyl units induces an increase in the HOMO–LUMO gap of 0.18 eV, and that meta‐linkage of the twisted segment in the polymer induces another increase of 0.24 eV compared to polydihexylfluorene. CONCLUSION: The new twisted biphenyl compounds are efficient segments to tune the bandgaps of conjugated polymers. The two fluorene‐based copolymers have wide bandgaps and exhibit potential as host materials. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号