首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A multiple shape memory and self‐healing poly(acrylic acid)‐graphene oxide‐Fe3+ (PAA‐GO‐Fe3+) hydrogel with supertough strength is synthesized containing dual physically cross‐linked PAA network by GO and Fe3+. The first GO cross‐linked hydrogel can be reversibly reinforced by immersing in FeCl3/HCl and pure water and softened by immersing in HCl. The tensile strength is 2.5 MPa with the break strain of 700%. Multiple shape memory capability is found depending on this unique feature, the hydrogel can be fixed in four temporary shapes by adjusting the immersing time in FeCl3/HCl and pure water, and recovered in sequence by immersing in HCl. This hydrogel also exhibits perfect self‐healing behavior, the cut as‐prepared hydrogel is almost completely healed by immersing in FeCl3/HCl. Besides, the hydrogel shows enhanced electrical conductivity with the presence of GO and Fe3+. This supertough hydrogel provides a new way to design soft actuators.

  相似文献   


2.
    
The multifunctional double network (DN) soft hydrogels reported here are highly swellable and stretchable pH‐responsive smart hydrogel materials with sufficient strength and self‐healing properties. Such multifunctional hydrogels are achieved using double crosslinking structures with multiple physical and chemical crosslinks. They consist of a copolymer network of acrylamide (AM) and sodium acrylate (Na‐AA) and other reversible network of poly(vinyl alcohol)–borax complex. They were characterized by Fourier transform IR analysis and studied for their hydrogen bonding and ionic interaction. The degree of equilibrium swelling was observed to be as high as 5959% (at pH 7.0) for a hydrogel with AM/Na‐AA = 25/75 wt% in the network (GS‐6 sample). The highest degree of swelling was observed to be 6494% at pH 8.5. The maximum tensile strength was measured to be 1670, 580 and 130 kPa for a DN hydrogel (GS‐2 sample: AM/Na‐AA =75/25 wt% with 20, 40 and 60 wt% water content, respectively). The self‐healing efficiency was estimated to be 69% for such a hydrogel. These multifunctional DN hydrogels with amalgamation of many functional properties are unique in hydrogel materials and such materials may find applications in sensors, actuators, smart windows and biomedical applications. © 2018 Society of Chemical Industry  相似文献   

3.
    
Self‐healing hydrogels are attractive for a variety of applications including wound dressings and coatings. This paper describes the facile preparation and characterization of an autonomous self‐healing hydrogel system comprising surfactant‐free hydrophobic associations. The hydrogel comprised a copolymer of benzyl methacrylate (B), octadecyl methacrylate (O), and methacrylic acid (MA). The hydrogels were prepared via a controlled dehydration procedure to achieve the formation of strong intermolecular hydrophobic associations of the octadecyl groups above a critical polymer concentration. Fractured hydrogels healed within 30 min without any external intervention. Increasing hydrogel polymer content from 31 wt % to 39 wt % resulted in a threefold increase in the shear modulus and 50% reduction of the relaxation time. Addition of 4 mM NaCl to a hydrogel of 31 wt % polymer content resulted in 2.5 times longer relaxation time and 24% decrease in shear modulus. The hydrogels swelled up water by up to four times its weight, which corroborates the robustness of the hydrophobic association crosslinks. The bulk properties of the hydrogels are discussed in terms of the hydrophobic associations of the O‐groups and the electrostatic interaction of the MA‐groups in the polymer chains. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44800.  相似文献   

4.
    
A new ionic crosslinked polymer hydrogel was achieved by the strategy of ionically crosslinking α,ω‐dibromide terminated polystyrene (Br‐PS‐Br) with poly(4‐vinyl pyridine) (P4VP) which was synthesized by reversible addition‐fragmentation chain transfer polymerization using a chain transfer agent containing a trithiocarbonate moiety. The moiety of trithiocarbonate was introduced into the crosslinked network to show the self‐healing characteristics. The chain structure and components of Br‐PS‐Br and P4VP were characterized through 1H NMR, gel permeation chromatography, Fourier transform IR spectroscopy and elemental analysis. The P4VP (Mn = 25 300 g mol?1) chains were crosslinked with Br‐PS‐Br (Mn = 2000 g mol?1) through the quaternization reaction to form a polymer network which was further crosslinked in acetonitrile by irradiation of UV light to fabricate a hydrogel. Such a hydrogel of P4VP/Br‐PS‐Br cut by a razor blade can be rapidly (1 h) and repeatedly (three times) healed through a reshuffling reaction of the trithiocarbonate moiety under irradiation by UV light. © 2018 Society of Chemical Industry  相似文献   

5.
A self‐healing polysaccharide hydrogel based on dynamic covalent enamine bonds has been prepared with a facile, cost‐effective, and eco‐friendly way. The polysaccharide hydrogel is obtained by mixing cellulose acetoacetate (CAA) aqueous solution with chitosan aqueous solution under room temperature. CAA is synthesized by reaction of cellulose with tert‐butyl acetoacetate (t‐BAA) in ionic liquid 1‐allyl‐3‐methylimidazolium chloride (AMIMCl). The structure and properties of CAA are characterized by FT‐IR, NMR, and solubility measurements. The results demonstrate that CAA possesses water solubility with a degree of substitution (DS) about 0.58–1.11. The hydrogel shows an excellent self‐healing behavior without other external stimuli and good stability under physiological conditions. Furthermore, the polysaccharide hydrogel exhibits pH responsive properties.

  相似文献   


6.
    
Collagen‐based hydrogels have gained significant popularity in biomedical applications; however, traditional collagen hydrogels are easily disabled for lack of self‐healing properties due to their non‐reversible bonds. Here, a self‐healing collagen‐based hydrogel has been developed based on dynamic network chemistry, consisting of dynamic imine linkages between collagen and dialdehyde guar gum, as well as diol‐borate ester bonds between guar gum and borax. In addition, macromolecular interactions amongst macromolecules are involved. The above‐mentioned interactions were validated by Fourier transform infrared spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DSC. The as‐prepared collagen‐based hydrogels showed good injectability and rapid self‐healing capacity (within 3 min) as reflected from injection tests, optical microscope observations, rheological measurements, as well as self‐healing studies. In addition, the collagen‐based hydrogels showed accelerated wound‐healing properties. This study offers a facile strategy to endow self‐healing ability on collagen‐based hydrogels without any external stimulus, which show great application potential as wound dressings. © 2020 Society of Chemical Industry  相似文献   

7.
    
Poly(acrylic acid) hydrogels crosslinked with N,N′‐methylenebisacrylamide were synthesized by free radical polymerization. Polymerization conditions had a significant influence over the gel content and swelling behaviour of the hydrogels. The incorporation of calcium ions led to the origin of a self‐healing feature. The self‐healing behaviour and mechanical performance of the hydrogels were systematically investigated. The hydrogels showed good tensile strength of 1 MPa and excellent stretchable behaviour where hydrogels regained instantaneously. Hydrogel pieces joined together to become an integrated matrix as soon as two cut pieces were brought in contact. The hydrogels possessed a marked healing efficiency of 97% within 6 h at room temperature without any external intervention. The results are explained in terms of the dynamic mobility of calcium ions within the dual‐crosslinked networks of the poly(acrylic acid) hydrogels. © 2017 Society of Chemical Industry  相似文献   

8.
    
A self‐healable hydrogel with recoverable self‐healing and mechanical properties is reported. The hydrogel (coded as ACSH) crosslinked by Schiff base linkage contains two polysaccharides of acrylamide‐modified chitosan (AMCS) and oxidized alginate (ADA). Self‐healing and mechanical properties are heavily influenced by the crosslinking time. The hydrogel crosslinked for 2 h possesses better mechanical and self‐healing properties than hydrogel crosslinked for 24 h. Macroscopic test shows that hydrogel without self‐healing ability can recover the self‐repair and mechanical properties by adjusting the pHs. The recovery of self‐healing and mechanical properties relies on the pH sensitivity of the Schiff base linkage. Adjusting the pH to acid, the Schiff base linkage becomes unstable and breaks. Regulating the pH to neutral, reconstruction of Schiff base linkage leads to recovery of the self‐repair and mechanical properties. The recoverable self‐healing property can be cycled once breakage and reconstruction of the Schiff base linkage can be conducted. In addition, this study demonstrates that the hydrogel can be remodeled into different shapes based on self‐healing property of the hydrogel. It is anticipated that this self‐healable hydrogel with recoverable self‐healing and mechanical properties may open a new way to investigate self‐healing hydrogel and find potential applications in different biomedical fields.  相似文献   

9.
    
Development of hydrogels with excellent and tunable mechanical properties combining with multifunctions is an intriguing issue in material science and engineering. Herein, bioinspired tunable sacrificial bonds are introduced into the tetra‐poly(ethylene glycol) (PEG) based polyurethane (PU) (TP) network to afford a hydrogel with tunable mechanical properties, shape‐memory, and self‐healing functions. The mussel‐inspired compound of Lysine‐dopamine (LDA) is introduced into the network of TP hydrogel through polyurethane/polyurea chemistry to form LDA‐tetra‐PEG‐PU (LTP) hydrogel. As catechol groups in LDAs can intermolecularly interact with each other and can also coordinate with ferric ions with different coordination ratios, these physical interactions with different strengths in the afforded LTP hydrogel construct kinds of sequentially tuned sacrificial bonds. As a result, these sacrificial bonds preferentially rupture prior to the covalent network upon external loading, which dissipate the energy and endow the hydrogel with advanced and postadjustable mechanical properties. This mechanism is investigated in detail. Furthermore, the LTP hydrogel shows multifunctions such as shape‐memory and self‐healing abilities. In addition, the tetra‐PEG based hydrogel shows remarkable thermoresponsiveness that the hydrogel distinctly contracts with the increase of the temperature. The improved mechanical strength and multifunctions should enlarge the application areas of the tetra‐PEG based hydrogel in various fields.  相似文献   

10.
    
How to reasonably fabricate polymer network for high performance hydrogels is a critical issue but remains a challenge. This work reports an approach to high performance hydrogels by molecularly engineering fully flexible crosslinking (ffC) network. A model network cross‐linked by fully flexible crosslinking points of triblock copolymer micelles and ionic interactions is fabricated. Due to the unique structure, the resulting ffC hydrogels are mechanically robust, tough, and self‐recoverable. For as‐prepared ffC hydrogels, a tensile stress more than 3.5 MPa can be achieved and the energy dissipation can reach up to 6.61 MJ m−3 at the tensile strain of 125%. Moreover, ffC hydrogels fabricated under constant strain can achieve an energy dissipation ability up to 11.63 MJ m−3 at the tensile strain of 100% and a tensile stress of 17.57 MPa. Based on these results, a dynamic molecular mechanism in the ffC hydrogel network under tensile deformation is proposed. The high performances of the ffC hydrogels can be possibly attributed to the sequential breakage and energy dissipation of the flexible crosslinking points and the easily accessible polymer chain orientation during tensile deformation.

  相似文献   


11.
12.
    
Chitosan (CS) is a semi‐natural polymer with supreme biological function, while the strong interchain hydrogen bonds cause poor water solubility and limit its broader use. To break the semi‐rigid structure of CS, a kind of CS modified by adamantane (AD‐CS) was successfully synthesized by amidation reaction with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride as catalyst. The chemical structure of AD‐CS was characterized by Fourier transform infrared spectroscopy and 1H NMR. The AD substitution degree of CS is around 2%, calculated by 1H NMR. A soft and transparent hydrogel composed of hydrogen bonds was obtained directly by simply adding a certain amount of water under mild conditions. Rheological measurements were carried out to research the mechanism of hydrogel formation by measuring the influence of different additives and conditions on the AD‐CS hydrogel. Reinforced hydrogels were prepared by freezing and thawing. The mechanical strength and self‐healing property of reinforced and pristine hydrogels were assessed with an oscillatory rheometer. The modulus of the reinforced hydrogel was obviously enhanced without much loss of self‐healing property. Other properties such as adhesion, injectability and temperature response were also studied. These injectable and self‐healing hydrogels show potential value in medical care. Additionally, this is a new method to design CS hydrogels with their original interchain hydrogen bonds. © 2019 Society of Chemical Industry  相似文献   

13.
    
The application of traditional chemically crosslinked hydrogels is often limited by poor mechanical properties because of their own inhomogeneous network and irreversible crosslinking bonds. Herein, physical interactions are applied to crosslink the interpenetrating network hydrogel, i.e., hydrogen bonding and crystalline domain for polyvinyl alcohol network, and hydrophobic interaction inside micelle for poly (acrylamide‐co‐stearyl methyl acrylate) [P(AAm‐co‐SMA)] network. In this gel network system, reversible energy dissipation mechanism is realized by dissociation and reassociation of weak interactions including hydrogen bonding and hydrophobic interaction inside the micelle. Strong crystalline domains serve as permanent crosslinking interactions to maintain network integrity under large extension. As a result, the synergy of weak and strong interactions leads to tough, antifatigue, fast recovery, and self‐healing properties of the hydrogel. This proposed strategy of achieving versatile hydrogels can broaden the use of hydrogels into load‐bearing applications.  相似文献   

14.
    
2D graphene with high quality holds great promise in improving the performance of the hydrogels owing to its exceptional electronic, thermal, and mechanical properties. However, the structure defects existed in graphene restrict its further applications. Herein, a simple and green method of fabricating defect‐free graphene nanosheets with the assistance of supercritical carbon dioxide (SC CO2) is designed. The graphene nanosheets directly assemble with acrylic acid monomer and clay, and a flexible semitransparent hydrogel is fabricated. Benefiting from the excellent properties of the defect‐free graphene, the hydrogel exhibits the high mechanical performance, superfast self‐healing capability, excellent conductivity, and super photothermal conversion efficiency. According to the advantages above, the graphene/poly(acrylic acid)/clay hydrogels can be used for intelligent sensors for disease diagnosis, artificial electronic skin, and military stealth materials in the near future.  相似文献   

15.
16.
    
In this paper, highly transparent, robust, and superhydrophilic polyethylene glycol tert‐octylphenyl ether nonionic surfactant/epoxy (Triton X‐100/epoxy, TXE) composite coatings are successfully prepared with a facile, one‐step drop‐casting method by mixing Triton X‐100 with an epoxy resin and an amine curing agent. The hydrogen bond reaction between the hydroxyl group of Triton X‐100 and the ether group of the epoxy resin improves the compatibility and reduces the glass transition temperature (Tg) of the TXE composite coatings. The free Triton X‐100 surfactant easily accumulates on the surface of the TXE composite coatings, which improves the hydrophilicity of the TXE composite coatings. The TXE composite coatings are self‐healable because of their low Tg and the migration of Triton X‐100 small molecule surfactant. Any damage arising from denting, cutting, or wiping by tetrahydrofuran can be healed, and the composite coating can regain its superhydrophilic properties through a heating process. The TXE composite coatings demonstrate excellent acid, alkali, salt, high temperature, and ultrasonic‐resistant properties. This facile preparation technique has the potential to be applied in the scalable fabrication of multifunctional coatings in anti‐fogging, oil–water separation, and optical–electric devices.  相似文献   

17.
    
Self‐healing paints would have the potential benefit of protecting the underlying substrate and extending the coating's service life. As a step toward those types of coatings, this work examines layer‐by‐layer films of branched poly(ethylene imine)/poly(acrylic acid) with the inclusion of various types of latex particles with different Tg and different compositions. Due to high mobility of the polyelectrolyte chains when plasticized with water, water enabled self‐healing of these films is demonstrated, as well as steam enabled self‐healing. The films with various latex particles show different swelling ratios, surface hydrophilicity, as well as varying ability to self‐heal scratches. This self‐healing property is studied as a function of temperature. Also, the mechanical properties such as hardness and modulus of the films are measured.  相似文献   

18.
    
It remains a challenge to develop tough hydrogels with recoverable or healable properties after damage. Herein, a new nanocomposite double‐network hydrogel (NC‐DN) consisting of first agar network and a homogeneous vinyl‐functionalized silica nanoparticles (VSNPs) macro‐crosslinked polyacrylamide (PAM) second network is reported. VSNPs are prepared via sol‐gel process using vinyltriethoxysilane as a silicon source. Then, Agar/PAM‐SiO2 NC‐DN hydrogels are fabricated by dual physically hydrogen bonds and VSNPs macro‐crosslinking. Under deformation, the reversible hydrogen bonds in agar network and PAM nanocomposite network successively break to dissipate energy and then recombine to recover the network, while VSNPs in the second network could effectively transfer stress to the network chains grafted on their surfaces and maintain the gel network. As a result, the optimal NC‐DN hydrogels exhibit ultrastretchable (fracture strain 7822%), super tough (fracture toughness 18.22 MJ m‐3, tensile strength 431 kPa), rapidly recoverable (≈92% toughness recovery after 5 min resting at room temperature), and self‐healable (can be stretched to 1331% after healing) properties. The newly designed Agar/PAM‐SiO2 NC‐DN hydrogels with tunable network structure and mechanical properties by multi‐bond crosslinking provide a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels and broaden the current hydrogel research and applications.  相似文献   

19.
研究了离子液体在水相中的自聚规律,从侧链、头部及阴离子类型等方面比较了影响胶团聚集的主要因素.实验发现,增加侧链长度有利于胶团形成,降低阴离子水合性以及采用甲基化头部也利于形成胶团,碳链长度变化的作用最明显,升高温度不利于离子液体形成胶团.  相似文献   

20.
The partially neutralised poly[ethylene‐co‐(methacrylic acid)] copolymer Surlyn 8940® (DuPont) ionomer exhibits damage‐initiated healing during high‐energy impact. This is attributed to the hierarchical structure of ionomers, arising from the presence of ionic aggregates and hydrogen bonding. This work investigates the mechanism of this process using novel techniques developed here. The ionomer's response to penetration has been found to consist of three consecutive events: an initial elastic response, an anelastic response and pseudo‐brittle failure. In addition, the ultimate level of healing has been shown to be dependent upon the elastic response during impact as well as post‐failure viscous flow. Increasing the local temperature at impact consistently increases elastic healing, although further improvements in healing are minor once the local temperature increases beyond the melting point. Below the order‐to‐disorder transition, microscopic investigations reveal severe plastic deformation while the lack of shape memory reduces the comparative level of elastic healing. Above this temperature, healing is facilitated by elastomeric behaviour at the impact site, while above the melting point a combination of elastomeric and viscous flow dominates. This work provides for the first time evidence of the consecutive healing events occurring during high‐impact penetration for ionomers. The hierarchical structure of ionomers and its impact upon the microstructure have been shown to be critical to the process. Comparison of the mechanical response during impact with that of non‐ionic polymers further highlights this. In addition, slow relaxational processes occurring post‐impact are found to facilitate further recovery in mechanical properties. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号