首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of nitric oxide (NO) and its second messenger cyclic guanosine monophosphate (cGMT) on prostacyclin (PGI2) synthesis were studied in cultured rat heart endothelial cells using three different non-enzymatic nitric oxide releasing substances as well as inhibitors of nitric oxide synthase and of soluble guanylate cyclase. Production of prostacyclin, measured as 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), was stimulated up to 1.7 fold in endothelial cells treated with the NO donors SIN-1 (3-morpholino sydnonimine), GEA 3162 (3-aryl-substituted oxatriazole imine) and GEA 3175 (3-aryl-substituted oxatriazole sulfonyl), chloride). In each case the synthesis of cGMP increase as much as 40-100 fold. An inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (L-NAME), decreased the basal production of 6-keto-PGF1 alpha in non-stimulated endothelial cells, an effect that could be reversed by the NO donors SIN-1, GEA 3162 and GEA 3175. cGMP formation in the L-NAME treated endothelial cells was unaltered. The guanylate cyclase inhibitors, methylene blue (100 mumol/l) and LY83583 (100 mumol/l), caused a 1.5-10 fold increase in 6-keto-PGF1 alpha production while NO-donor-stimulated endothelial cGMP production was decreased by 10 to 90%. However, when SIN-1 was used as a stimulant, LY83583 had no significant effect on the production of cGMP. These findings support the hypothesis that NO stimulates prostacyclin production directly by activating cyclooxygenase. The results also suggest that NO could have an indirect effect on prostacyclin production via cGMP.  相似文献   

2.
Prostaglandin (PG) biosynthesis by cytokine stimulated normal adult human osteoblast-like (hOB) cells was evaluated by thin layer chromatography, high performance liquid chromatography, and specific immunoassays. PGE2 was the predominant PG formed under all incubation conditions tested. Control samples produced measurable amounts of PGE2, and the measured level of this metabolite increased by 22-fold (from 7 to 152 ng/ml) following a 20 h treatment with the combination of TGF beta and tumor necrosis factor-alpha(TNF). The production of 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) and of PGF2 alpha were each increased by about five-fold (from about 0.5 to 2.5 ng/ml) in samples treated with the cytokines. Thus, TGF beta and TNF exerted a regulation of hOB cell PG biosynthesis that was principally directed towards an increased PGE2 biosynthesis, with lesser effects on the production of other PG metabolites. COX-2 mRNA levels were increased within 2 h of cytokine stimulation, reached a maximum at 6-12 h, and levels had appreciably diminished by 24 h after treatment. Both TGF beta and TNF could independently increase COX-2 mRNA levels and PG biosynthesis. However, the increased production of PGE2 resulting from TNF stimulation was blocked by the addition of an interleukin-1 beta (IL-1 beta) neutralizing antibody, suggesting that TNF regulation of hOB cell PG synthesis was secondary to its capacity to increase hOB cell IL-1 beta production. TGF beta regulation of PG production was not affected by the addition of the neutralizing antibody. These studies support the proposition that PGs can be important autocrine/paracrine mediators of bone biology, whose production by hOB cells is responsively regulated by osteotropic cytokines.  相似文献   

3.
We established microdetermination methods of prostaglandin (PG) metabolites by GC-selected ion monitoring (GC-SIM) and applied them to the clinical investigations. At first the microdetermination of delta 17-6-keto-PGF1 alpha, a hydrolyzed metabolite of PGI2, is described. An authentic delta 17-6-keto-PGF1 alpha was prepared from eicosapentaenoic acid (EPA) incubated with a homogenate from the bovine aortic intima. [18O] delta 17-6-Keto-PGF1 alpha was synthesized to obtain an internal standard for GC-SIM of delta 17-6-keto-PGF1 alpha. A good linear response over the range of 10 pg-5 ng was demonstrated. Chromatographic conditions using a MP-65HT column presented nearly baseline separation of delta 17-6-keto-PGF1 alpha and 6-keto-PGF1 alpha. Furthermore, a monoclonal antibody against cis-3-hexen-1-ol was prepared and used to separate and/or concentrate delta 17-6-keto-PGF1 alpha in the human blood sera. Using the prepared immunoaffinity columns of this antibody, delta 17-6-keto-PGF1 alpha was clearly detected in the human blood sera by GC/MS analysis. We were able to detect delta 17-6-keto-PGF1 alpha of the amount ranging from 6 to 26 pg/ml in the human blood plasma. The present method can be applied to the determination of delta 17-6-keto-PGF1 alpha in the human urine and plasma. Diabetes mellitus induces platelet alterations such as hyperaggregation. Variations in PG production seem to be related to this phenomenon but the changes in PG levels remain unclear. So we microanalyzed the 11-dehydrothromboxane B2 (TXB2) and 2,3-dinor-6-keto-PGF1 alpha, which were stable metabolites of TXA2 and PGI2, in the urine and investigated the relationship between the thromboxane/prostacyclin (TX/PGI) ratio and diabetes mellitus. The TX/PGI ratio in the urine of diabetics was higher than that of healthy volunteers. In murine, the TX/PGI ratio of STZ-induced mice was also higher than that of non-induced mice. The ratio of db/db mice also increased with the progress of diabetes mellitus. Furthermore, we investigated the relationship between the retinal vein occlusion (RVO), a thrombotic disease in which the retinal vein is blocked by blood aggregations, and the TX/PGI ratio. The TX/PGI level in patients with the RVO, who were not combine diabetes, was significantly higher than that in healthy volunteers. One of the causes of the RVO may be due to the variation of thromboxane production. This GC-SIM method can be used to determine the TX/PGI ratio in the urine.  相似文献   

4.
Activation of beta adrenergic receptors in the isolated rabbit heart by catecholamines stimulates prostacyclin (PGI2) synthesis, which is inhibited by adenosine 3'5'-cyclic monophosphate (cAMP). The purpose of this study was to determine if activation of beta adrenergic receptors in cultured coronary endothelial cells (CEC) of rabbit heart with isoproterenol (ISOP) stimulates PGI2 synthesis and if cAMP inhibits the synthesis of this prostanoid and to investigate the underlying mechanism. Incubation of CEC with ISOP increased production of cAMP and PGI2, measured as immunoreactive cAMP and 6-keto-prostaglandin F1alpha, (6-keto-PGF1alpha), respectively. Forskolin, an activator of adenylyl cyclase, increased cAMP accumulation and inhibited ISOP-stimulated 6-keto-PGF1alpha synthesis. 8-(4-chlorophenyl-thio) cAMP also inhibited ISOP-induced 6-keto-PGF1alpha production. However, miconazole, an inhibitor of adenylyl cyclase, reduced cAMP accumulation and enhanced ISOP-stimulated 6-keto-PGF1alpha synthesis in CEC. ISOP-induced 6-keto-PGF1alpha synthesis was attenuated by C2-ceramide, an inhibitor of phospholipase D (PLD) by propranolol, a beta-AR antagonist that also inhibits phosphatidate phosphohydrolase and by the diacylglycerol lipase inhibitor 1,6-bis-(cyclohexyloximinocarbonylamino)-hexane (RHC 80267). Acetylcholine (ACh) induced 6-keto-PGF1alpha synthesis was also inhibited by these agents. Both ISOP and ACh increased PLD activity, which was inhibited by C2-ceramide but not by RHC 80267 or propranolol. ACh but not ISOP increased phospholipase A2 activity in CEC. ISOP- but not ACh-induced increase in PLD activity was attenuated by forskolin and 8-(4-chlorophenyl-thio)-adenosine 3'-5'-cyclic monophosphate and augmented by miconazole. These data suggest that beta adrenergic receptors activation promotes PGI2 synthesis in the CEC by selective activation of PLD and that cAMP decreases PGI2 synthesis by decreasing PLD activity. Moreover, beta adrenergic receptors activated PLD appears to be distinct from that stimulated by ACh.  相似文献   

5.
This study investigated the signal transduction mechanisms of angiotensin-(1-7) [Ang-(1-7)]- and Ang II-stimulated arachidonic acid (AA) release for prostaglandin (PG) production in rabbit aortic vascular smooth muscle cells. Ang II and Ang-(1-7) enhanced AA release in cells prelabeled with [3H]AA. However, 6-keto-PGF1 alpha synthesis produced by Ang II was much less than that caused by Ang-(1-7). In the presence of the lipoxygenase inhibitor baicalein, Ang II enhanced production of 6-keto-PGF1 alpha to a greater degree than Ang-(1-7). Angiotensin type (AT)1 receptor antagonist DUP-753 inhibited only Ang II-induced [3H]AA release, whereas the AT2 receptor antagonist PD-123319 inhibited both Ang II- and Ang-(1-7)-induced [3H]AA release. Ang-(1-7), receptor antagonist D-Ala7-Ang-(1-7) inhibited the effect of Ang-(1-7), but not of Ang II. In cells transiently transfected with cytosolic phospholipase A2 (cPLA2), mitogen-activated protein (MAP) kinase or Ca(++)-/cal-modulin-dependent protein (CAM) kinase II antisense oligonucleotides, Ang-(1-7)- and Ang II-induced [3H]AA release was attenuated. The CaM kinase II inhibitor KN-93 and the MAP kinase kinase inhibitor PD-98059 attenuated both Ang-(1-7)- and Ang II-induced cPLA2 activity and [3H]AA release. Ang-(1-7) and Ang II also increased CaM kinase II and MAP kinase activities. Although KN-93 attenuated MAP kinase activity, PD-98059 did not affect CaM kinase II activity. Both Ang II and Ang-(1-7) caused translocation of cytosolic PLA2 to the nuclear envelope. These data show that Ang-(1-7) and Ang II stimulate AA release and prostacyclin synthesis via activation of distinct types of AT receptors. Both peptides appear to stimulate CaM kinase II, which in turn, via MAP kinase activation, enhances cPLA2 activity and release of AA for PG synthesis.  相似文献   

6.
The trauma-induced acute ocular inflammatory response has been characterized by investigating the kinetics of blood-aqueous barrier (BAB) breakdown, prostaglandin (PG) accumulation in the aqueous humor, and cyclooxygenase (PGH synthase) activity of the iris-ciliary body (ICB) following paracentesis in the NZA rabbit. BAB breakdown was assessed by quantifying plasma protein extravasation into the anterior chamber. PGE2 and 6-keto-PGF(1alpha) concentrations in the aqueous humor were quantified by radioimmunoassay. The capacity of ICB tissue homogenates to generate eicosanoids from exogenously supplied [I-14C]-arachidonic acid was assessed radiometrically by HPLC. Paracentesis resulted in a rapid and dramatic increase in aqueous humor PGE2 concentrations. Within 10 minutes, PGE2 concentrations increased 937-fold, from 6.2+/-4.9 pg/ml to maximal concentrations of 5810+/-3829 pg/ml. PG synthesis was followed temporally by an increase in aqueous humor protein, with peak levels (53.1 mg/ml) achieved within 30 minutes post paracentesis. Both PGE2 and protein levels gradually declined to near baseline levels 48 hours after trauma. ICB homogenates from naive animals produced significant amounts of eicosanoids (total PG=2.95 nmol/ 10 min/100 mg tissue). HHT (12 hydroxy-heptadecatrienoic acid) was produced in the greatest quantity, followed by PGE2alpha, PGI2, and TXB2/ PGF2 . Notably, following paracentesis, eicosanoid synthesis by the isolated ICB was observed to diminish abruptly. Formation of all eicosanoids was uniformly reduced by approximately 40% five minutes following paracentesis, with an 81% decrease in synthetic activity at 15 minutes. Eicosanoid synthetic capacity was only restored to baseline 48 hours post paracentesis. These findings suggest that, following ocular trauma, temporal changes occur in ICB PG synthetic activity that may impact on the selection of an optimal dosing paradigm for efficacy testing of topically administered NSAIDs.  相似文献   

7.
We investigated the effect of chronic exposure (3 days) with low-density lipoprotein (LDL) and oxidized (Ox)-LDL on the unstimulated and stimulated formation of prostacyclin (6-keto-prostaglandin [PG]F1 alpha) and total inositol phosphates (IPs) by cultured bovine aortic endothelial cells. Neither basal nor bradykinin-stimulated (1 to 10 nmol/L) formation of 6-keto-PGF1 alpha was affected by LDL, except at the highest concentration of bradykinin tested (100 nmol/L). In the presence of the antioxidants N-acetyl-L-cysteine (NAC, 10 mumol/L) or vitamin E (100 mumol/L), basal and bradykinin-stimulated formation of 6-keto-PGF1 alpha was potentiated by 20 micrograms protein/mL of LDL. Ox-LDL decreased unstimulated formation of the eicosanoid from 3.1 +/- 0.2 pg/micrograms protein in control cells to 1.6 +/- 0.1 and 0.5 +/- 0.1 pg/microgram protein after 3-day incubation with 5 and 20 micrograms protein/mL of Ox-LDL, respectively (P < .05). As in the basal state, Ox-LDL decreased bradykinin-induced 6-keto-PGF1 alpha formation. NAC or vitamin E did not influence Ox-LDL-induced endothelial cell changes in eicosanoid production. IPs formation by endothelial cells increased to a similar extent in the presence of 20 micrograms protein/mL of either LDL or Ox-LDL. However, no change was apparent in the bradykinin (10 mumol/L)-induced increase in total IPs formation after incubation with the lipoproteins. The data indicate that chronic exposure to Ox-LDL abolishes the production of prostacyclin by cultured endothelial cells. The oxidatively modified lipoprotein seems to more specifically affect the prostacyclin pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide that also stimulates production of prostacyclin (PGI2) from arachidonic acid. The purpose of this study was to determine the contribution of phospholipases (PLs) A2, C, and/or D in ET-1-induced PGI2 formation in the rat aorta, measured as immunoreactive 6-ketoprostaglandin (PG) F1 alpha. ET-1 increased 6-keto-PGF1 alpha formation, which was not affected by a PLA2 inhibitor, 7,7-dimethyl eicosadienoic acid (DEDA). Furthermore, ET-1 failed to stimulate PLA2 activity measured in the cytosol (cPLA2), using phosphatidylcholine, L-a-1-palmitoyl-2-arachidonyl[14C] as a substrate. However, the adrenergic agonist norepinephrine increased 6-keto-PGF1 alpha formation, which was attenuated by DEDA, and enhanced PLA2 activity. ET-1 enhanced PLC activity, as indicated by increased inositol phosphate production, which was prevented by a PLC inhibitor, U-73122. However, ET-1-induced 6-keto-PGF1 alpha production was not altered by U-73122. An inhibitor of PLD activation, C2-ceramide, attenuated ET-1-induced PLD activity, as indicated by the production of phosphatidylethanol. Furthermore, ET-1-induced 6-keto-PGF1 alpha formation was inhibited by C2-ceramide as well as by ethanol treatment. Moreover, inhibitors of phosphatidate phosphohydrolase (propranolol) and diacylglycerol lipase (RHC-80267), attenuated ET-1-induced 6-keto-PGF1 alpha formation. Finally, ET-1-induced activation of PLD was not attenuated by a selective PKC inhibitor, bisindolylmaleimide I. These data suggest a novel pathway for ET-1-induced PGI2 formation in the rat aorta involving activation of PLD but not cPLA2 and independent of PLC or PKC activation.  相似文献   

9.
Previously, we have shown that alpha-2C and alpha-1A adrenergic receptors (AR) stimulate prostacyclin (PGI2) synthesis through a pertussis toxin-sensitive guanine nucleotide-binding protein (G protein) in vascular smooth muscle cells (VSMC). The purpose of this study was to assess the role of Ca++ in PGI2 production elicited by alpha-AR activation and to investigate the modulation of the Ca++ channel by G proteins coupled to these alpha-AR in VSMC. PGI2 was measured as immunoreactive 6-keto-PGF1 alpha by radioimmunoassay and cytosolic calcium ([Ca++]i) by spectrofluorometry using fura-2. Norepinephrine, methoxamine and UK-14304 enhanced 6-keto-PGF1 alpha production and [Ca++]i, which was inhibited by depletion of extracellular Ca++ and by Ca++ channel antagonists (verapamil, nifedipine and PN 200-110). Moreover, the Ca++ channel activator Bay K 8644 increased 6-keto-PGF1 alpha production in a nifedipine-sensitive manner, indicating the involvement of dihydropyridine-sensitive Ca++ channels in VSMC. Pertussis toxin inhibited AR agonist-induced 6-keto-PGF1 alpha production and the increase in [Ca++]i. Alpha AR agonists increase Ca++ influx in the presence of guanosine 5'-0-(2- thiodiphosphate) (GTP-gamma-S), and this effect was blocked in the presence of guanine 5'-O-(2-thiodiphosphate) (GDP-beta-S) and antiserum against Gi alpha 1-2 protein in reversibly permeabilized cells with beta-escin. VSMC of rabbit aortae contain a G protein(s) that was recognized by Gi alpha 1-2 but not Gi alpha 3 or G0 antibodies at 1:200 dilution. The calmodulin inhibitor W-7 blocked AR agonist and Bay K 8644-stimulated 6-keto-PGF1 alpha production. The phospholipase A2 inhibitors 7,7-dimethyleicosadienoic acid and oleoyloxyethyl phosphocholine but not phospholipase C inhibitor U-73122 reduced 6-keto-PGF1 alpha production in VSMC. These data suggest that a pertussis toxin-sensitive G protein, probably Gi alpha 1-2, coupled to alpha AR regulates Ca++ influx, which, in turn, by interacting with calmodulin, increases phospholipase A2 activity to release arachidonic acid for PGI2 synthesis in VSMC of rabbit aortae.  相似文献   

10.
We therefore designed the present study to evaluate the effect of S-adenosyl-L-methionine (SAMe) on the synthesis of platelet thromboxane and vascular prostacyclin. The experimental materials were human blood and aortic rings from untreated Wistar rats; and platelets and aortic rings from Wistar rats treated for 7 days with SAMe at 5 or 10 mg/kg/day s.c. The administration of 10 mg/Kg/day of SAMe to rats significantly increased vascular production of 6-keto-PGF1alpha. In vitro vascular production of 6-keto-PGF1alpha increased in a concentration-dependent manner when SAMe was incubated in the range of 10(-7) to 10(-4) M. The greatest increase was 167 +/- 15%, obtained in samples incubated with 5 x 10(-5) M SAMe. In aortic rings, lipid peroxidase production was inhibited in a concentration-dependent manner in the SAMe range of 10(-7) to 10(-5) M. Maximum inhibition (75.3 +/- 6.2%) was obtained with SAMe at 1.5 x 10(-5) M. Vascular 6-keto-PGF1alpha production showed a significant inverse linear correlation with vascular lipid peroxide production (Y = -0.04x + 18.1, r = 0.7309, P < 0.0001).  相似文献   

11.
Abortion or delivery were induced by extra-amniotic instillation of Rivanol during the second trimester in twelve patients and during the third trimester in two patients with fetal death and one patient with fetal acrania. Serial sampling of amniotic fluid was performed through a transabdominal catheter and the levels of free arachidonic acid (AA), prostaglandin F2 alpha (PGF2 alpha), prostaglandin E2 (PGE2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and thromboxane B2 (TXB2) were determined. The levels of AA, PGF2 alpha, PGE2, 6-keto-PGF1 alpha and TXB2 in amniotic fluid increased significantly during induction with the exception of AA in fetal death which was high and remained constant during induction. Furthermore, PGF2 alpha, 6-keto-PGF1 alpha and TXB2 were all significantly correlated to AA. These observations suggested that free AA is released during Rivanol-induction of abortion and labour giving an increased synthesis of PGF2 alpha, PGE2 prostacyclin and thromboxane A2 in the fetal membranes and the decidua but not in the fetus. This increase might be relevant for the initiation and progress of abortion and labour in these patients.  相似文献   

12.
The pharmacological profile of a novel dual inhibitor, tepoxalin and of its carboxylic acid metabolite on cyclooxygenase and lipoxygenase pathways was evaluated by in vitro incubation with synovial tissue. Tissue specimens obtained at surgery in rheumatoid arthritis (RA, n = 10) or osteoarthritis (OA, n = 11) patients were incubated. Tepoxalin (10(-7), 10(-6), 10(-5) M) decreased eicosanoid release calculated in % of tyrode control for OA: LTC4 to 71-33%, 6-keto-PGF1a to 37-20%, PGE2 to 29-6%. For RA: LTC4 to 56-22%, 6-keto-PGF1a to 43-22%, PGE2 to 57-32%. Similarly, its metabolite (10(-7), 10(-5)M) decreased release in OA: LTC4 to 99 and 60%, PGE2 to 42 and 20%, 6-keto-PGF1a to 54 and 25%. In RA:LTC4 to 81 and 45%, PGE2 to 61 and 30%, 6-keto-PGF1a to 46 and 18%. Significance (P < 0.05) was achieved for all but 1 group (LTC4 metabolite at 10(-7)M vs tyrode). In summary a marked and dose dependent decrease of LT and PG release was obtained when incubating the dual inhibitor tepoxalin and its active carboxylic acid metabolite with synovial tissue at doses expected to be reached in the joint during therapy.  相似文献   

13.
The role of prostacyclin and thromboxane A2 in the pathogenesis of Bartter's syndrome was investigated by measurement of the urinary excretion of 6-keto-PGF1 alpha and thromboxane B2, respectively, in five patients. The prostaglandin metabolites were extracted from urine by a reproducible method and measured by specific radioimmunoassays. The patients with Bartter's syndrome excreted about four-times as much 6-keto-PGF1 alpha as the normal controls. In contrast, there was no significant difference in the urinary excretion of thromboxane B2 between the patients and the controls. In a second part of the study, three patients were treated with indomethacin (150 mg/day for four days), an inhibitor of prostaglandin synthesis. This regimen suppressed urinary excretion of 6-keto-PGF1 alpha by 43% and that of thromboxane B2 by 46%. It is suggested that the increase in prostacyclin production is responsible for both the hyperreninemia and and the other endocrine derangements as well as the hyporesponsiveness of blood pressure to intravenous infusion of vasopressors in patients with Bartter's syndrome.  相似文献   

14.
OBJECTIVES: To find out whether the tendency toward poor outcome in lupus pregnancies could be explained by changes in prostacyclin/thromboxane production, to relate these changes to the presence of antiphospholipid antibodies, and to study the potential benefits of low-dose aspirin. METHODS: We followed the urinary output of prostacyclin metabolites (6-keto-prostaglandin [PG]F1 alpha, 2,3-dinor-6-keto-PGF1 alpha) and thromboxane metabolites (thromboxane B2, 2,3-dinor-thromboxane B2) using high-pressure liquid chromatography followed by radioimmunoassay. We studied 14 pregnant women with systemic lupus erythematosus (SLE), of whom six had detectable antiphospholipid antibodies. The patients were randomized by a computerized program to receive either 50 mg aspirin daily (six women) or placebo (eight women). Nine healthy pregnant women served as controls. RESULTS: The production of prostacyclin was normal in early pregnancy in SLE patients but was reduced during late gestation in those without antiphospholipid antibodies. The production of thromboxane was increased in SLE patients compared with controls, and this increase was highest (two-to threefold rise) when antiphospholipid antibodies were detectable. Aspirin eliminated thromboxane dominance without affecting prostacyclin production. CONCLUSION: These data suggest that the presence of antiphospholipid antibodies in SLE patients may trigger thromboxane dominance, possibly contributing to the adverse outcome of these pregnancies. This thromboxane dominance can be eliminated with aspirin.  相似文献   

15.
Lipoxygenase inhibitors reduce blood pressure in hypertensive rats. The vasodepressor effect of lipoxygenase inhibitors may be related to increased production of prostaglandin (PG) I2 since lipoxygenase-derived fatty acid hydroperoxides inhibit PGI2 synthase. This hypothesis was examined in rats made hypertensive by infusion of angiotensin II (200 ng/min i.p.) for 12 to 14 days. In hypertensive but not in normotensive rats, the lipoxygenase inhibitor baicalein (60 mg/kg s.c.) increased (P<.05) the conversion of exogenous PGH2 to PGI2 by aortic segments, the release of 6-keto-PGF1alpha by aortic rings, the concentration of 6-keto-PGF1alpha in blood, and the renal excretion of 6-keto-PGF1alpha. Treatment with baicalein did not affect the blood pressure of normotensive rats but decreased the blood pressure of hypertensive rats from 177+/-8 to 133+/-9 mm Hg after 120 minutes (P<.05). Also, the lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (8 mg/kg s.c.) was without effect on the blood pressure of normotensive rats but decreased the blood pressure of hypertensive rats from 182+/-4 to 139+/-8 mm Hg (P<.05). However, the blood pressure of hypertensive rats pretreated with indomethacin (5 mg/kg i.v.) was affected by neither baicalein nor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. Moreover, in hypertensive rats in which baicalein had decreased blood pressure to 148+/-6 mm Hg, the administration of rabbit serum containing antibodies against 5,6-dihydro-PGI2 (0.3 mL i.v.) partially reversed the response to baicalein, increasing blood pressure to 179+/-7 mm Hg within 20 minutes (P<.05). The antibodies also were shown to block the vasodepressor effect of PGI2 but not of PGE2. Collectively, these data suggest contribution of PGI2 to the acute antihypertensive effect of baicalein in rats with angiotensin II-induced hypertension.  相似文献   

16.
Effect of intramuscular administration (10 mg/kg/week) of testosterone and oxandrolone on a) thrombocyte aggregation and b) synthesis of prostaglandins from [14C]-arachidonic acid in thrombocytes and aorta of atherosclerosis-susceptible White Carneau pigeon was examined. Neither testosterone nor oxandrolone influenced collagen, ADP and arachidonic acid induced aggregation or the synthesis of prostaglandins in thrombocytes. However, both testosterone and oxandrolone stimulated (p less than 0.05) the synthesis of 6-keto-PGF1 alpha (stable product of prostacyclin) und PGE2 in aorta.  相似文献   

17.
The manipulation of stress gene expression by heavy metals provides protection against the lethal effects of endotoxemia in murine models of septic shock. Recent in vitro studies with alveolar macrophages or monocytes show that induction of the stress response in these cells is followed by a decreased liberation of major cytokines [tumor necrosis factor-alpha (TNF alpha) and interleukin-1 (IL-1)] after endotoxin challenge. These findings suggest that the increased resistance to endotoxin in vivo after stress protein induction could be explained by an altered pattern of inflammatory mediator release. Therefore, we measured the time course of thromboxane-B2 (TxB2), 6-keto-PGF1 alpha, platelet activating factor (PAF), TNF alpha, interleukin-1 beta (IL-1 beta), and interleukin-6 (IL-6) formation with and without induction of the stress response in an established porcine model of recurrent endotoxemia (Klosterhalfen et al., Biochem Pharmacol 43: 2103-2109, 1992). Induction of the stress response was done by a pretreatment with Zn2+ (25 mg/kg zinc-bis-(DL-hydrogenasparate = 5 mg/kg Zn2+). Pretreatment with Zn2+ prior to lipopolysaccharide (LPS) infusion induced an increased heat shock protein 70 and metallothionein expression in the lungs, liver, and kidneys and increased plasma levels of TNF alpha, IL-1 beta, IL-6, and TxB2 as opposed to untreated controls. After LPS infusion, however, pretreated animals showed significantly decreased peak plasma levels of all mediators as opposed to the untreated group. The time course of mediator release was identical with the decreasing and increasing three peak profiles described previously. Hemodynamic data presented significantly decreased peak pulmonary artery pressures and significantly altered hypodynamic/hyperdynamic cardiac output levels in the pretreated group. In conclusion, the data show that the induction of stress proteins by Zn2+ could be a practicable strategy to prevent sepsis.  相似文献   

18.
In order to further elucidate effect of hemorrhagic shock on endotoxin-inducing cytokine production, the present study was designed to investigate the production of tumor necrosis factor alpha (TNF alpha) induced by low-dose (1 microgram/kg) of lipopolysaccharide (LPS) and its cellular sources after hemorrhagic shock (HS) in rats. With combination of expression of lipopolysaccharide-binding protein (LBP) mRNA in the liver, lungs, and kidneys, we further analyzed a possible mechanism for increasing sensitivity to LPS by shock. We found in vivo that plasma TNF alpha levels in the HS + LPS group were 20-fold higher than those in the HS group (p < .01) and 2.7-fold higher than those in the LPS group (p < .05). It was shown in vitro that the capacity of the peripheral white blood cells to produce TNF alpha in response to LPS stimulation was significantly decreased by 126% (p < .01) and 57% (p < .05) compared with the pre-shock levels and sham group, respectively, at the end of resuscitation following shock, and still markedly inhibited 3 h after resuscitation, while the capacity of hepatic Kupffer's cells to produce TNF alpha was significantly increased by 110% compared with the sham group (p < .01) after shock and resuscitation. Results from RT-PCR showed that expression of LBP mRNA in the liver, lungs, and kidneys was increased after shock and resuscitation. It is suggested that hemorrhagic shock could significantly strengthen endotoxin to induce TNF alpha production, which might be due to up-regulation of LBP expression in tissues after shock, and the tissue macrophage population may be the main source for cytokine production in shock.  相似文献   

19.
We studied the changes in myocardial and aortic concentrations of prostacyclin and thromboxane A2 during acute coronary occlusion with or without reperfusion in rabbits fed with a cholesterol-enriched diet with or without fish oil supplementation for a short (5 days) or long period (6 weeks). New Zealand white male rabbits were divided into 5 groups: Group I, 15 control rabbits fed with a laboratory standard rabbit chow. In addition to the standard chow, the 4 study groups were treated with cholesterol or fish oil. Group II, 17 rabbits fed with a 1% high cholesterol diet for 5 days. Group III, 16 rabbits fed with a diet containing 1% cholesterol and 10% fish oil for 5 days. Group IV, 17 rabbits fed with the same diet as group II for 6 weeks. Group V, 18 rabbits fed with the same diet as group III for 6 weeks. Each group of rabbits was randomly divided into the coronary occlusion or occlusion-reperfusion mode of experiment. Acute coronary occlusion was induced by ligating the marginal branch of the left circumflex coronary artery for 1 h. Subsequent reperfusion for 4 h was performed in the occlusion-reperfusion rabbits. The aortic tissue above the aortic valve and the ischemic and normal (nonischemic) areas of the left ventricle were excised for the measurement of 6-keto-PGF1 alpha and thromboxane B2 levels by radioimmunoassay. Both during coronary occlusion and occlusion-reperfusion, rabbits showed higher myocardial concentrations of 6-keto-PGF1 alpha and thromboxane B2 in the ischemic area than in the normal myocardium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Coronary bypass vessels, saphenous vein (SV) and internal thoracic artery (ITA), differ in susceptibility to atherosclerosis and medium- to long-term patency. Whereas most ITA remain patent (90% at 10 years), 20% of SV grafts fail in the first year and approximately 45% fail within 10 years. Reasons for these differences are not fully understood. Loss of SV patency may reflect early metabolic events, particularly increased proteoglycan (PG) synthesis which contributes to intimal volume and promotes atherogenesis through retention of atherogenic lipoproteins. We determined, in vitro, the PG metabolic activity of SV, ITA, and human coronary arteries through autoradiographic detection of incorporated [3H]glucosamine. SV had significantly higher levels of PG synthesis than ITA, especially in the subendothelial zone and after time (7 days) in culture. Patterns of synthesis in coronary vessels were similar to SV with high levels of incorporation in the subendothelial zone of thickened intima (> 100 microm). Increased subendothelial labelling in SV was due to increased PG synthesis, not decreased degradation. ITA showed no propensity for upregulation of subendothelial PG synthesis. Immunohistochemistry showed TGF-beta1 and TGF-beta2 localised primarily to the subendothelial zone of SV and coronary arteries. With time in culture immunostaining increased in parallel with increased PG synthesis. Subendothelial TGF-beta1 and TGF-beta2 were absent in ITA. A panspecific TGF-beta neutralising antibody reduced subendothelial PG synthesis in SV and coronary arteries by 50 and 60%, respectively. These results support the idea that vessels susceptible to atherosclerosis show increased accumulation of subendothelial PG mediated by TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号