首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
可调对比度目标源装置中对比度的标定   总被引:1,自引:0,他引:1  
搭建了可调对比度目标源装置,研究了图像对比度和光学对比度的关系,提出了用改进的BP神经网络标定对比度的方法.首先,设计了用于对比度标定的BP神经网络模型.然后,利用LM( Levenberg-Marquardt)算法结合缩放法改进神经网络以提高其收敛速度及泛化能力.最后,通过可调对比度目标源装置实验平台,由测量的辐照度得出了对应的图像对比度数据,使该装置可以通过调节辐照度实时获得规定的对比度.与传统BP神经网络方法相比,改进后的BP神经网络收敛速度快,泛化能力强.标定精度比经典BP算法提高了100倍,比最速下降法提高了10倍.训练次数仅需2 876次时,对比度的标定值与目标值的误差最大值是0.01%,训练均方误差收敛为0.000 459 441,测试误差收敛为0.000 467 003,满足了对检验装置中对比度标定的需要.  相似文献   

6.
This work quantitatively evaluates the contrast in phase contrast images of thin vermiculite crystals recorded by TEM and aberration-corrected bright-field STEM. Specimen movement induced by electron irradiation remains a major problem limiting the phase contrast in TEM images of radiation-sensitive specimens. While spot scanning improves the contrast, it does not eliminate the problem. One possibility is to utilise aberration-corrected scanning transmission electron microscopy (STEM) with an Ångstrom-sized probe to illuminate the sample, and thus further reduce irradiation-induced specimen movement. Vermiculite is relatively radiation insensitive in TEM to electron fluences below 100,000 e2 and this is likely to be similar for STEM although different damage mechanisms could occur. We compare the performance of a TEM with a thermally assisted field emission electron gun (FEG) and charge coupled device (CCD) image capture to the performance of STEMs with spherical aberration correction, cold field emission electron sources and photomultiplier tube image capture at a range of electron fluences and similar illumination areas. We show that the absolute contrast of the phase contrast images obtained by aberration-corrected STEM is better than that obtained by TEM. Although the STEM contrast is higher, the efficiency of collection of electrons in bright field STEM is still much less than that in bright field TEM (where for thin samples virtually all the electrons contribute to the image), and the SNR of equivalent STEM images is three times lower. This is better than expected, probably due to the absence of a frequency dependent modulation transfer function in the STEM detection system. With optimisation of the STEM bright field collection angles, the efficiency may approach that of bright field TEM, and if reductions in beam-induced specimen movement are found, STEM could surpass the overall performance of TEM.  相似文献   

7.
An optical microscope has been developed based on the differential interference contrast method to evaluate the roughness of supersmooth surfaces. The instrument uses a Bragg cell and a translation stage driven by a DC motor to produce an image of an area of a sample. Its lateral resolution is 2 μm and its vertical resolution is subangstrom. It takes only 7 seconds to scan an area of 1 mm2. Three different curve fits can be used to remove the tilt, the curvature, and the low spatial frequency features of the sample. A figure for surface roughness is produced that is repeatable to 0.01 Å. The instrument is described and the noise sources and repeatability are discussed. The results of measurements of ring laser gyroscope mirror substrates are shown.  相似文献   

8.
9.
10.
We propose a simple calculation of near-field magneto-optical (MO) images based on the beam propagation method. We calculate both Faraday rotation and circular dichroism contrasts of planar magnetic structures such as as-grown thin films and ion-irradiated samples. High-contrast near-field MO images are obtained, in good agreement with our experimental observations.  相似文献   

11.
We propose a simple calculation of near-field magneto-optical (MO) images based on the beam propagation method. We calculate both Faraday rotation and circular dichroism contrasts of planar magnetic structures such as as-grown thin films and ion-irradiated samples. High-contrast near-field MO images are obtained, in good agreement with our experimental observations.  相似文献   

12.
Using the optical methods described, specimens can be observed with modified multimodal light microscopes based on interference contrast combined with phase contrast, dark‐ or bright‐field illumination. Thus, the particular visual information associated with interference and phase contrast, dark‐ and bright‐field illumination is joined in real‐time composite images appearing in enhanced clarity and purified from typical artefacts, which are apparent in standard phase contrast and dark‐field illumination. In particular, haloing and shade‐off are absent or significantly reduced as well as marginal blooming and scattering. The background brightness and thus the range of contrast can be continuously modulated and variable transitions can be achieved between interference contrast and complementary illumination techniques. The methods reported should be of general interest for all disciplines using phase and interference contrast microscopy, especially in biology and medicine, and also in material sciences when implemented in vertical illuminators.  相似文献   

13.
14.
15.
16.
激光显示中散斑的减弱   总被引:4,自引:0,他引:4  
为减弱激光显示中散斑的影响,在对散斑对比度进行理论分析的基础上,提出了一种利用位相光学元件减弱散斑的方法。实验以绿光为光源,让激光束通过位相光学元件,再经过CCD相机和图像处理系统处理,得到屏幕上散斑对比度和光强的变化。实验结果表明:散斑的对比度降低到3.7%,可满足激光显示中对散斑减弱的要求。该方法具有简单易行、成本低、适合批量化生产等优点。  相似文献   

17.
18.
19.
20.
A contrast minimum is observed when 88 nm diameter polystyrene latex spheres are underfocused, which is related to the wide-angle scattering peaks. Images due to scattered and non-scattered wave components are displaced due to objective-lens spherical aberration and defocus. Maximum overlap of these components produces a contrast minimum at underfocus, related to the spherical aberration of the particular lens used. Similarly, a high-contrast band at carbon-film edges arises from spherical aberration and defocus separation of non-scattered and wide-angle scattered waves. This band increases in contrast with film thickness and in width with lens defocus. These geometrical effects account for the well-known ‘blinking’ of contrast of large biological objects upon swinging through focus without an objective aperture, and for the general contrast increase of defocused large objects. Fresnel fringes account for only a narrow band of enhanced contrast at distinct edges and cannot account for contrast enhancement of large objects lacking distinct edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号