首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
以Fe2O3,LiH2PO4,乙炔黑和蔗糖为原料,采用高温固相合成方法制备LiFePO4/C复合正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行表征。结果表明,合成材料为单一晶相正交晶系结构,在电压为2.50~4.20V(vs.Li^+/Li),以0.1mA/cm^2电流密度下经恒电流充放电测试,其首次放电比容量为156.3mAh/g,经过30周充放电循环后放电比容量为157.7mAh/g,表现出较大的初始放电比容量和优异的循环性能。  相似文献   

2.
采用碳热还原法合成橄榄石型LiFePO4正极材料,并用溶胶-凝胶法在其表面修饰La2O3颗粒。通过X射线衍射(XRD)、场发射扫描电镜(FE-SEM)等方法对表面修饰前后的LiFePO4进行表征,分析了表面修饰前后LiFePO4物理性质的变化,并进行了恒流充放电测试和循环伏安测试,研究了表面修饰对LiFePO4电化学性能的影响。结果表明,La2O3表面修饰没有改变LiFePO4材料的晶体结构,LiFePO4材料经La2O3修饰后,其电化学性能显著改善。  相似文献   

3.
分别以水热合成的石墨烯(H-Gr)和商业化石墨烯(C-Gr)为载体,以溶胶-凝胶法合成的LiFePO4(S-LFP)和商业化的LiFePO4(C-LFP)为活性组分,通过固相法制备了4个LiFePO4/石墨烯复合物。采用X射线粉末衍射(XRD)、扫描电镜(SEM)和电化学性能测试,对上述LiFePO4/石墨烯复合物进行了对比研究。实验结果表明,C-LFP/H-Gr显示了最高的可逆放电容量,0.1C倍率下,达到155.0mA.h.g-1,其次是C-LFP/C-Gr(144.6mA.h.g-1)和S-LFP/H-Gr(131.5mA.h.g-1),S-LFP/C-Gr的性能最差,仅为119.6mA.h.g-1。C-LFP/H-Gr较高的电化学容量,一方面可归结于商业化的LiFePO4较小的粒径和良好的晶型结构;另一方面水热合成的石墨烯小的片层结构对LiFePO4的良好包覆,不仅增强了材料导电性,而且提高了活性物质LiFePO4的利用率。  相似文献   

4.
锂离子电池正极材料LiNixFe1-xPO4的制备及其性能   总被引:2,自引:0,他引:2  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Ni对LiFePO4进行掺杂,研究了Ni掺杂量对LiFePO4性能的影响,在LiNixFe1-xPO4(x=0,0.01,0.03,0.05,0.10)材料中,LiNi0.03Fe0.97PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第2次放电比容量为133.278mAh/g,循环20次后为127.655mAh/g.  相似文献   

5.
以Li2CO3,FeC2O4·2H2O和NH4 H2 PO4为前驱体,分别以葡萄糖和葡萄糖/乙炔黑为碳源,利用微波加热合成了LiFePO4/C正极材料.用X射线粉末衍射(XRD)和扫描电镜(SEM)对材料进行了表征,用四探针法测定了材料的电导率.研究了碳源与微波温度对材料微结构和电化学性能的影响,发现由于乙炔黑的协同效应,用双碳源在600℃反应即可得到最佳电化学性能的LiFePO4/C,而仅用葡萄糖作碳源反应需要在较高温度(如700℃)下进行.  相似文献   

6.
基于不同碳源的LiFePO4/C的合成及电化学性能研究   总被引:3,自引:0,他引:3  
以不同有机碳(月桂酸、葡萄糖和柠檬酸)为碳源合成了橄榄石型LiFePO4/C锂离子电池复合正极材料.研究了不同碳源对LiFePO4/C复合材料的结构、形貌及其电化学性能的影响.结果表明用不同碳源合成的LiFePO4/C复合材料的形貌及颗粒大小不同,影响其电化学性能.其中以葡萄糖作为碳源合成的复合正极材料粒径细小,分布均匀,具有最好的电化学性能,在0.1 C放电电流下,首次放电比容量达143.1 mAh/g,接近LiFePO4的理论比容量(170 mAh/g).  相似文献   

7.
提出了一种采用共沉淀法合成镁掺杂的锂离子正极材料LiFePO4的新方法,研究了合成条件,采用XRD,SEM,循环伏安测定,电化学阻抗谱分析,以及充放电测试对合成的材料作了表征分析.结果表明,采用共沉淀合成方法可以获得性能良好的LiFePO4;Mg^2+掺杂对LiFePO4结构没有产生明显的影响,但掺杂量的大小对LiFePO4的放电性能有较大影响.  相似文献   

8.
在不同Li/Fe配比、合成工艺相同条件下,采用Sol-gel液相合成法合成LiFePO4/C正极材料。利用XRD衍射分析和SEM扫描电镜对合成的粉体进行物相表征,通过交流阻抗测试和充放电对材料进行电化学性能研究。结果表明,Li、Fe物质的量比为1.05时合成的LiFePO4/C结晶度最优,交流阻抗曲线显示该材料具有较小的内部阻抗,极化现象小,在0.2C倍率放电下首次放电比容量为127.5mA·h/g,电化学性能较佳。  相似文献   

9.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er^3+,Y^3+,Gd^3+的试样具有优良的循环性能和倍率性能,而掺杂Nd^3+,La^3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Re0.01FePO4的电化学性能最佳,在C/10和1C(1C=120mA·g^-1)倍率下放电容量均最大。  相似文献   

10.
为了提高LiFePO4的电化学性能,用Mg2 对LiFePO4进行掺杂,以Li3PO4为锂源、Mg(OH)2为掺杂源,采用固相法合成锂离子电池正极材料Li1-xMgxFePO4(x=0.005、0.01、0.02和0.03).通过X射线衍射分析及电化学测试,研究了Mg掺杂对材料的结构和电化学性能的影响.实验研究表明,掺入少量的Mg2 ,可以减小晶胞体积,提高LiFePO4的循环性能和比容量.当Mg的掺入量为2 mol%时,以0.1C倍率充放电,Li0.98Mg0.02FePO4最大放电容量为123.6 mAh/g.  相似文献   

11.
用高温固相反应法制备Cu微粒包覆的锂离子电池正极材料Cu/LiFePO4。采用X射线衍射、场发射扫描电镜对材料的物相结构和颗粒形貌进行分析和观察,采用恒流充放电、慢扫描循环伏安法和电化学阻抗谱法测试材料的电化学性能。结果表明,Cu微粒包覆使复合材料颗粒分散更均匀,结晶更明显;Cu/LiFePO4(n(Cu)∶n(Li)=1∶15)正极材料首次放电比容量最高为142.8 mA.h/g,与纯LiFePO4正极材料的对应值151.7 mA.h/g相比有所下降;虽然Cu微粒的加入在一定程度上能够提高材料的电子导电率,但在第一周充电时Cu即发生不可逆氧化,导致该复合材料具有较低的放电比容量和较大的首次不可逆容量损失。  相似文献   

12.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the c1 space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0μm. During the Li ion chemical intercalation, radical P2O4-O7 is disrupted into two PO3-4 ions in the presence of O2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

13.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vo1% H2 atmosphere.The effects of different iron sources,including Fe(OH)3 and FeC2O4·2H2O,on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed.The crystal structure,the morphology,and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),laser particle-size distribution measurement,and other electrochemical techniques.The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeCeO4·2H2O at 700℃ have the similar electrochemical performances.The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g-1 and 137.4 mAh.g-1 at the C/5 rate,respectively.However,the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher,which is significant for the improvement of the capacity of the battery.  相似文献   

14.
磷酸铁锂被认为是最有可能应用于锂离子动力电池的正极材料.采用化学研磨法制备了磷酸铁锂,并对其结构和电化学性能进行了研究.结果表明:相对于传统高温固相法,化学研磨法可以有效细化磷酸铁锂的颗粒和晶粒,所得材料0.1 C放电容量为132 mAh/g,明显高于传统固相法112 mAh/g的容量.  相似文献   

15.
采用共沉淀法合成了锂离子正极材料LiFePO4,考察了不同合成条件对材料结构及性能的影响.研究结果表明:通过碳包覆改性后,LiFePO4的容量可明显提高,SiO2的掺杂对LiFePO4的结构没有影响.同时讨论了上述两种改性方法对材料性能的影响机制.  相似文献   

16.
以天然鸡蛋膜(ESM)为基底,制备了一种具有良好电容性能的碳化鸡蛋膜/碳纳米管(CNTs)/二氧化锰(MnO2)(cESM/CNTs/MnO2)复合材料电极。首先将CNTs吸附到ESM上,通过碳化得到cESM/CNTs,再将其与高锰酸钾(KMnO4)通过氧化还原反应,在cESM/CNTs上生成MnO2纳米颗粒,最终得到cESM/CNTs/MnO2复合材料。采用X射线衍射、扫描电子显微镜表征复合材料的微观形貌与结构,通过循环伏安法和计时电位法测试了cESM/CNTs与KMnO4的质量比不同时制备得到的cESM/CNTs/MnO2复合材料的电化学性能。实验结果表明:在当cESM/CNTs与KMnO4的质量比为1∶4时,cESM/CNTs/MnO2复合材料展现出优异的电容性能,并且在扫描1 000圈后,复合材料的容量保持率高达93.4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号