首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DMFCs用SPEEK/SiOx-S复合质子交换膜   总被引:1,自引:0,他引:1       下载免费PDF全文
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80°C, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that of Nafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiOx-S (20%, by mass) membrane could withstand temperature up to 145°C, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion115 membrane and reached 0.17 S•cm-1, while pure SPEEK mem-brane dissolved at 90°C. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.  相似文献   

2.
A study to evaluate the tensile mechanical properties of sulfonated poly(ether ether ketone) (SPEEK) and BPO4/SPEEK composite membranes has been carried out. It is aimed to give an assessment of these materials for applications in proton exchange membrane fuel cells. The stress–strain response of the membranes was measured as a function of the degree of sulfonation (DS) and the filler–matrix ratio. In addition, the effects of immersion in water at various temperatures were explored in situ by means of a homemade testing chamber fitted to the tensile analyzer. The results indicate that the DS has an important influence on the final mechanical behavior of the membranes. The introduction of the BPO4 solid filler leads to deterioration in mechanical performance compared to unfilled SPEEK. A general picture of the microstructural features influencing the mechanical properties of SPEEK and BPO4/SPEEK membranes is proposed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2380–2393, 2005  相似文献   

3.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

4.
聚醚醚酮(PEEK)是一种性能优异的工程塑料。笔者简单地介绍了聚醚醚酮的特性,对近年来磺化聚醚醚酮的制备、SPEEK的性能及应用做了比较全面的归纳,并对磺化聚醚醚酮未来的发展前景进行了展望。  相似文献   

5.
Dae Sik Kim 《Polymer》2006,47(23):7871-7880
Sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) copolymer containing pendant sulfonic acid group (sulfonic acid content (SC) = 0.67) was synthesized from commercially available monomers such as sodium 6,7-dihydroxy-2-naphthalenesulfonate (DHNS), 1,3-bis(4-fluorobenzoyl)-benzene (BFBB), and hexafluorobisphenol A (6F-BPA). SPAEEKK/silica hybrid membranes were prepared using the sol-gel process under acidic conditions. The SPAEEKK/silica hybrid membranes were fabricated with different silica contents and the membranes were modified to achieve improved proton conductivity incorporating P-OH groups (H3PO4 treatment).The silica particles within the membranes were used for the purpose of blocking excessive methanol cross-over and for forming a pathway for proton transport due to water absorption onto the hydrophilic SiOH surface. The proton conductivities of H3PO4-doped membranes were somewhat higher than the un-doped (H3PO4-free) membranes due to increasing hydrophilicity of the membranes. The presence of silica particles within the organic polymer matrix, which decreases the ratio of free water to bound water due to the SiOH on the surface of silica derived from sol-gel reaction, results in hybrid membranes with reduced methanol permeability and improved proton conductivity.  相似文献   

6.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

7.
Sulfonated poly(ether ether ketone) (SPEEK) is a very promising alternative membrane material for direct methanol fuel cells. However, with a fairly high degree of sulfonation (DS), SPEEK membranes can swell excessively and even dissolve at high temperature. This restricts membranes from working above a high tolerable temperature to get high proton conductivity. To deal with this contradictory situation, insolvable zirconium tricarboxybutylphosphonate (Zr(PBTC)) powder was employed to make a composite with SPEEK polymer in an attempt to improve temperature tolerance of the membranes. SPEEK/Zr(PBTC) composite membranes were obtained by casting a homogeneous mixture of Zr(PBTC) and SPEEK in N,N-dimethylacetamide on a glass plate and then evaporating the solvent at 60°C. Many characteristics were investigated, including thermal stability, liquid uptake, methanol permeability and proton conductivity. Results showed significant improvement not only in temperature tolerance, but also in methanol resistance of the SPEEK/Zr(PBTC) composite membranes. The membranes containing 30 wt-% ∼ 40 wt-% of Zr(PBTC) had their methanol permeability around 10−7 cm2·s−1 at room temperature to 80°C, which was one order of magnitude lower than that of Nafion?115. High proton conductivity of the composite membranes, however, could also be achieved from higher temperature applied. At 100% relative humidity, above 90°C the conductivity of the composite membrane containing 40 wt-% of Zr(PBTC) exceeded that of the Nafion?115 membrane and even reached a high value of 0.36 S·cm−1 at 160°C. Improved applicable temperature and high conductivity of the compositemembrane indicated its promising application inDMFC operations at high temperature. __________ Translated from Acta Polymerica Sinica, 2007, (4): 337–342 [译自:高分子学报]  相似文献   

8.
Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion® 112 was used as reference material. DMFC tests were also performed at 50 °C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion® 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion® 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%.  相似文献   

9.
Supercapacitors have attracted much interest because of their high power density and long cycling life. However, the porous polypropylene membranes that are widely used as separators in supercapacitors are unfavorable for transporting ions and constructing the interfaces between electrolyte and electrodes due to their hydrophobic property. As a consequence, a crosslinked solid polymer electrolyte membrane and a semi‐interpenetrating polymer network (sIPN) were fabricated from sulfonated poly(ether ether ketone) (SPEEK) and poly(vinyl alcohol) (PVA), which can be used as hydrophilic separators. Their structures were examined using Fourier transform infrared spectroscopy. The electrochemical properties of assembled electrical double‐layer capacitors (EDLCs) were investigated using cyclic voltammetry, galvanostatic charging–discharging and impedance analysis. At a current density of 1 A g?1, a single electrode in the EDLC with the sIPN shows a specific capacitance of 134 F g?1. As a comparison, a single electrode in the EDLC with a SPEEK membrane demonstrates a specific capacitance of only 121 F g?1. After 1000 charge–discharge cycles, the specific capacitance retentions of both EDLCs are nearly 100%. These results suggest that the sIPN based on SPEEK and PVA has great potential to serve as a separator in EDLCs. © 2018 Society of Chemical Industry  相似文献   

10.
In this research, the preparation of low cost proton exchange membranes (PEMs) based on sulfonated poly ether ether ketone (SPEEK) for application in the microbial fuel cells (MFCs) is studied. Sulfonated polystyrene (SPS) and phosphotungstic acid (PWA) were employed to improve the performance of PEM through the creation of more proton pathways. At first, the sulfonation of PEEK and polystyrene were performed through two modified methods to obtain uniform and high degree of sulfonation (DS) of the polymers and then, the PEMs were prepared through the solution casting method. Accordingly, the formation of uniform skin layer was confirmed by the SEM micrographs. Blending the aforementioned additives to the SPEEK polymer solution significantly enhanced the proton conductivity, water uptake and durability of the modified membranes. The proton conductivities of SPEEK/SPS and SPEEK/PWA membranes at additive/SPEEK weight ratio of 0.15 were 45.3% and 26.2% higher than that of the commercial Nafion117 membrane, respectively. Moreover, the degradation times for the abovementioned modified membranes were 140 and 350 min which indicated satisfactory oxidation stability. Besides, the aforementioned membranes exhibited two times more water uptake compared to the neat SPEEK membrane. Finally, SPEEK/SPS and SPEEK/PWA membranes produced 68% and 36% higher maximum power in the MFC, compared to the commercial Nafion117 membrane. Therefore, the fabricated PEMs are potentially suitable alternatives to be used in the fuel cell applications.  相似文献   

11.
The sulfonated poly(ether ether ketone ketone)/phosphotungstic acid (SPEEKK/PWA) composite membranes were researched for proton exchange membranes. The effect of casting condition on the properties of membranes was studied in detail. The study showed that the casting condition has great influence on the membrane properties because of the hydrogen bond between the SPEEK and PWA and the interaction between the SPEEKK and dimethylformamide (DMF). The PWA particles are well crystallized on the surface when the velocity of the solvent volatilization is very slow under the SEM. The study will favor further research on excellent composite membranes for proton exchange membrane fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 4020–4026, 2007  相似文献   

12.
Poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether sulfone ketone) (PVdF/SPPESK) blend membranes are successfully prepared by solution blending method for novel proton exchange membrane (PEM). PVdF crystallinity, FTIR‐ATR spectroscopy, thermal stability, morphology, water uptake, dimension stability, and proton conductivity are investigated on PVdF/SPPESK blends with different PVdF contents. XRD and DSC analysis reveal that the PVdF crystallinity in the blends depends on PVdF content. The FTIR‐ATR spectra indicate that SPPESK remains proton‐conducting function in the blends due to the intactness of ? SO3H group. Thermal analysis results show a very high thermal stability (Td1 = 246–261°C) of the blends. PVdF crystallinity and morphology study demonstrate that with lower PVdF content, PVdF are very compatible with SPPESK. Also, with lower PVdF content, PVdF/SPPESK blends possess high water uptake, e.g., P/S 10/90 and P/S 15/85 have water uptake of 135 and 99% at 95°C, respectively. The blend membranes also have good dimension stability because the swelling ratios are at a fairly low level (e.g., 8–22%, 80°C). PVdF/SPPESK blends with low PVdF content exhibit very high proton conductivity, e.g., at 80°C, P/S 15/85 and P/S 10/90 reach 2.6 × 10?2 and 3.6 × 10?2 S cm?1, respectively, which are close to or even higher than that (3.4 × 10?2 S cm?1) of Nafion115 under the same test condition. All above properties indicate that the PVdF/SPPESK blend membranes (particularly, with 10–20% of PVdF content) are very promising for use in PEM field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A novel series of hydrocarbon‐based copolymers containing flexible alkylsulfonated groups and hydroxylated poly(ether ether ketone) backbones was designed and prepared as proton conducting membranes. Among the membranes, the membrane SPO3–(PMS–PSBOS)2 with the ion exchange capacity 1.70 showed good proton conductivity at 0.137 S/cm at 80 °C, which was two times as much as that of the control membrane SPO. Further, incorporating the sulfonated graphene oxide (s‐GO) into SPO3–(PMS‐PSBOS)2 leads to the composite membrane SPO3–(PMS–PSBOS)2–SGO, which exhibited higher proton conductivity compared to Nation 117 and the native membrane SPO3–(PMS–PSBOS)2. In addition, the composite membrane SPO3–(PMS–PSBOS)2–SGO showed well‐defined phase separated structures and high selectivity (1.40 × 105 Ss/cm3), which were about three times as that of Nafion 117 (0.52 × 105 Ss/cm3). These results suggested that these membranes are promising materials for direct methanol fuel cell (DMFC) applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45205.  相似文献   

14.
Development of alternate materials to Nafion, based on ionically conducting polymers and their blends is important for the wider applications of proton exchange membrane fuel cells. In this work, blends of sulfonated poly(ether ether ketone) (SPEEK) with poly(ether sulfone) (PES) are investigated. SPEEK with various ion exchange capacity (IEC) was prepared and blended with PES, which is nonionic and hydrophobic in nature. A comparative study of the water uptake, proton conductivity, and thermo‐mechanical characteristics of SPEEK and the blend membranes as a function of the IEC is presented. Addition of PES decreases the water uptake and conductivity of SPEEK. Chemical and thermal stability and mechanical properties of the membrane improve with the addition of PES. The effect of water content on the thermo‐mechanical properties of membranes was also studied. The morphology of blend membranes was studied using SEM to understand the microstructure and miscibility of the components. On the basis of the results, a plausible microstructure of the blends is presented, and is shown to be useful in understanding the variation of different properties with blending. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Novel aromatic sulfonated poly(ether ether sulfone)s (SPEESs) with tert‐butyl groups were synthesized by aromatic nucleophilic polycondensation of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone (SDCDPS), 4,4′‐dichlorodiphenylsulfone (DCDPS), and tert‐butylhydroquinone (TBHQ). The resulting copolymers showed very good thermal stability and could be cast into tough membranes. The morphology of the membranes was investigated with atomic force microscopy. The proton conductivity of SPEES‐40 membranes increased from 0.062 S/cm at 25°C to 0.083 S/cm at 80°C, which was higher than the 0.077 S/cm of Nafion 117 under the same testing conditions. These copolymers are good candidates to be new polymeric electrolyte materials for proton exchange membrane fuel cells. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1443–1450, 2007  相似文献   

16.
以二氧化硅和磷钨酸改性磺化聚醚醚酮制得一种新型磺化聚醚醚酮复合膜。复合膜中杂多酸仍然保持着Keggin型PW12O430-阴离子的特征结构,二氧化硅和磷钨酸以无定形状态均匀分散于复合膜中。磷钨酸/二氧化硅/磺化聚醚醚酮复合膜的阻醇性能优于Nafion115;质子导电性能随着温度的提高有所增加。复合膜在磷钨酸中具有良好的稳定性。  相似文献   

17.
Lysozyme-loaded polymeric composite microparticles were successfully coprecipitated by solution-enhanced dispersion by supercritical CO2 (SEDS), starting with a homogeneous organic solvent solution of lysozyme/poly(L -lactide)/poly(ethylene glycol) (lysozyme/PLLA/PEG). The effects of different drug loads (5, 8, and 12% w/w), PLLA Mw (10, 50, 100, and 200 kDa), PEG contents (0, 10, 30, and 50% PEG/(PLLA+PEG) w/w), and PEG Mw (400, 1000, and 4000 kDa) on the surface morphology, particle size, and drug release profile of the resulting composite microparticles were investigated. The results indicate that the size of the microparticles decreased and the rate of drug release increased with an increase in drug load, PEG content, or PEG Mw; the particle size first increased and then decreased with an increase in PLLA Mw, and the drug release was controlled by both particle size and PLLA Mw. The Fourier transform infrared spectrometer analysis and circular dichroism spectra measurement reveal that no significant changes occurred in the molecular structures during the SEDS processing, which is favorable to the production of protein–polymer composite microparticles for a protein drug delivery system. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

19.
A series of well‐defined poly(ether ketone ketone) (PEKK)/sodium sulfonated poly(aryl ether ketone) (S‐PAEK) block copolymers of high molecular weights was prepared by direct nucleophilic polymerization of hydroquinone with sodium 5,5′‐carbonylbis(2‐fluorobenzene sulfonate) ( 1 ) and PEKK oligomer ( 2 ). Varying the ratio of 1 to 2 used in polymerization can be used to control the degree of polymer sulfonation, which correspondingly affects the polymer solubility in solvents. Increasing content of 1 in the copolymers, slightly decreases their thermal stability which is nevertheless thermally stable up to 400 °C. Two Tg values, or one broad Tg, were observed in the DSC measurements of the block copolymers, indicating the existence of phase separation, which was further proved by phase‐separated morphologies as shown in atomic force microscopy images. © 2001 Society of Chemical Industry  相似文献   

20.
A series of sulfonated poly(ether sulfone) (SPES)/silica composite membranes were prepared by sol–gel method using tetraethylorthosilicate (TEOS) hydrolysis. Physico–chemical properties of the composite membranes were characterized by thermogravimetric analysis (TGA), X‐ray diffraction (XRD), scanning electron microscope–energy dispersive X‐ray (SEM–EDX), and water uptake. Compared to a pure SPES membrane, SiO2 doping in the membranes led to a higher thermal stability and water uptake. SEM–EDX indicated that SiO2 particles were uniformly embedded throughout the SPES matrix. Proper silica loadings (below 5 wt %) in the composite membranes helped to inhibit methanol permeation. The permeability coefficient of the composite membrane with 5 wt % SiO2 was 1.06 × 10?7 cm2/s, which was lower than that of the SPES and just one tenth of that of Nafion® 112. Although proton conductivity of the composite membranes decreased with increasing silica content, the selectivity (the ratio of proton conductivity and methanol permeability) of the composite membrane with 5 wt % silica loading was higher than that of the SPES and Nafion® 112 membrane. This excellent selectivity of SPES/SiO2 composite membranes could indicate a potential feasibility as a promising electrolyte for direct methanol fuel cell. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号