首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation characteristics of glycerol/water mixtures were studied using hydrophilic poly(acrylonitrile-comethacrylic acid) (PANMAC), poly(acrylonitrile-co-hydroxyethyl methacrylate) (PANHEMA), Poly(vinyl alcohol) GFT-1001, and poly(vinyl alcohol) (PVA) crosslinked with maleic anhydride (PVAManh) membranes. All membranes were found to be highly water selective. PVAManh membrane yielded the highest permeation flux for water over the entire range of water concentration studied. Homopolymers (PVAManh and GFT-1001) gave better permeation rates than copolymer membranes (PANHEMA and PANMAC). But the swelling of homopolymers is nuch greater than that of copolymers, which is why PVA membranes have poor longevity. No effect on selectivity of the membrane was observed with a change in operating parameters. No decomposition/polymerization of glycerin was observed, as there was no involvement of high temperatures as there is with distillation. A comparison of pervaporation with vapor-liquid equilibrium data showed that pervaporation of glycerin/water mixtures yielded better selectivity than vapor-liquid equilibrium, particularly for glycerol concentrations above 90 wt%.  相似文献   

2.
The separation of acetic acid–water mixtures was carried by using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effect of feed composition on the separation characteristics was studied and the performances of the separation methods were compared. Permeation rates obtained in PV were found to be high, whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/(m2 h) and separation factors of 2.0–61.0, depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2030–2039, 2006  相似文献   

3.
The separation of acetic acid–water mixtures was carried out using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process, 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effects of feed composition on the separation characteristics were studied and the performances of the separation methods were compared. Permeation rates were found to be high in PV whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/m2h and separation factors of 2.0–61.0 depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1385–1394, 2006  相似文献   

4.
5.
Pervaporation composite membranes were prepared with a three‐layer structure: a PP support, a PEI microporous structure, and a PDMS–PMHS selective layer. Swelling tests were performed in water, ethyl acetate, and four different ethyl acetate–water mixtures, to calculate the diffusional and swelling parameters. Moreover, the dynamic–mechanical properties of the membranes were obtained before and after the swelling experiments, and their relaxation spectra were characterized with the Fuoss–Kirkwood equation and analyzed in terms of the free volume parameter. It was found that the ethyl acetate possesses high affinity with the composite membranes and that the absorption of these small molecules substantially modifies the viscoelastic behavior and structure of the active layer. The combination of swelling experiments and the study of the mechanical relaxations proved to be an appropriate technique to investigate the behavior of pervaporation membranes immersed in different mixtures. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1384–1393, 2004  相似文献   

6.
Organoselective membrane was prepared from ethylene propylene diene monomer (EPDM) rubber. Crosslinked EPDM rubber was filled with 2, 4 and 6 wt% N330 carbon black filler to produce three different filled membranes designated as EPDMCV2, EPDMCV4 and EPDMCV6, respectively. These filled rubber membranes were used for pervaporative recovery of low concentration of pyridine from water. These filled membranes were characterized by crosslink density, SEM, XRD and mechanical properties. Sorption thermodynamics were discussed. Partial permeability, intrinsic membrane selectivity and diffusion coefficients of solvents were also determined. The filled membranes showed much higher pyridine selectivity than most of the membranes reported for similar system.  相似文献   

7.
毛恒  王月  王森  刘伟民  吕静  陈甫雪  赵之平 《化工学报》2022,73(3):1389-1402
渗透汽化(PV)膜分离是一种高效节能、无污染的化工分离技术,在有机废水处理领域的应用潜力巨大。以3-氨丙基三乙氧基硅烷(APTES)改性二维ZIF-L(AZLs),将其引入聚醚嵌段酰胺(PEBA)内制备AZLs/PEBA混合基质膜,用于分离水溶液中的苯酚。系统表征了所制膜的微结构与物化特性,考察了APTES添加量、AZLs填充量、操作温度、料液浓度等对膜分离性能的影响。结果表明:AZLs均匀分散在PEBA基质中,表明两者具有良好的界面相容性。AZLs的加入使得膜疏水性增强而表面自由能降低,从而提高了PEBA膜的选择性。当分离80℃、1000 mg/kg苯酚水溶液时,AZLs/PEBA膜总通量可达2046 g/(m2·h),分离因子为25.4,并且具有一定的稳定性。所制AZLs/PEBA混合基质膜在含酚废水处理方面具有应用前景。  相似文献   

8.
A new blended membrane was prepared and tested by pervaporation of light oil, a mixture of five alcohols plus water. The blended membrane was synthesized by blending poly(vinyl alcohol) and poly(acrylic acid‐co‐maleic acid) sodium salt in the presence of sulfuric acid to dope the reaction. We tested several membranes in order to choose the adequate composition to have the best permselectivity. The PVA(60)–PAA‐co‐maleic acid(40) membrane was selected as it was found to be highly selective. Sorption experiments were performed using binary and ternary water–alcohol solutions. The influence of temperature and feed composition on the selectivity and flux in pervaporation was investigated for two different binary mixtures (water/ethanol, water/isobutanol) and one ternary system (water/ethanol/isobutanol). This membrane presents good permselective properties, high water flux, and good selectivity and can even be used for high‐water activities The performances of this new membrane were compared to those obtained with the PVA(90)–PAA(10) membrane synthesized recently: The fluxes observed for the water–ethanol separation were of the same order of magnitude but the selectivity was found to be much higher. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1709–1716, 2002  相似文献   

9.
Poly (acrylonitrile‐co‐methyl acrylate) copolymer designated as PANMA was used for making pervaporation membrane. This membrane was used for separation of acetic acid–water mixtures over the concentration range of 80–99.5 wt% acetic acid in water. Interaction parameters based on Flory–Huggins lattice model and engaged species induced clustering (ENSIC) model was used to explain swelling of the membranes. Coupling in sorption was explained in terms of activity coefficient of water and acid in feed and membrane using Flory–Huggins model and also by interpolating ENSIC parameters. Flow coupling in pervaporation was also determined from phenomenological deviation coefficients. Intrinsic membrane properties like partial permeability and membrane selectivity of the solvents were also determined. Diffusion coefficient and plasticization coefficient of the solvents were obtained using a modified solution–diffusion model. The copolymer membrane showed high flux and water selectivity for highly concentrated acid. Thus, at 30°C temperature 1–20 wt% water in feed was concentrated to 82–84 wt% water in permeate and for 0.95 wt% water in feed, the membrane showed thickness normalized flux and water selectivity of 1.71 kg m?2 h?1 mμ and 409, respectively. OLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

10.
Separation of components of aqueous waste streams containing organic pollutants is not only industrially very important but also is a challenging process. In this study, separation of a phenol–water mixture was carried out by using a membrane pervaporation technique with indigenously developed polyimide membranes. The membranes were found to permeate water selectively. The total flux as well as that of the individual components were measured. The effect of lithium chloride modification of polyimide film on total flux was investigated. The total flux obtained with 2% lithium chloride modification was about 3.6 times higher than that obtained with virgin membrane. The effects of different parameters such as feed composition and temperature on flux, and separation factor were determined. With modified membrane, a separation factor as high as 18.0 was obtained for water at 27°C and with 8.0 wt % phenol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 822–829, 2002  相似文献   

11.
The saving and recycling of chemical substances, which may be hazardous to human health and ecosystems, constitute a desirable goal worldwide. It is important to use a natural polymer that has a highly specific function and an environmental friendliness. In this study, humic acid was added to a natural polymer, a pectin membrane, and a hydrophobic poly(1‐trimethylsilyl‐1‐propyne) (PMSP) membrane to enhance the affinity for phenol or aniline. Also, the separation performance, based on the membrane materials and methods of addition, was investigated. The effect of the adsorption of phenol and aniline by humic acid was investigated. A high rate of aniline adsorption was observed. The interaction of the humic acids and the aniline was mainly observed by polar bonding. For the PMSP membrane with humic acid added to the surface, the humic acid exists in a colloidal state. During pervaporation, the permeation of water was prevented by the adsorbed solute. Because the permeability of aniline increased and the permeability of water significantly decreased, the PMSP membrane with humic acid added to the surface had a high permeate aniline concentration, and the permselectivity was improved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 461–468, 2004  相似文献   

12.
Poly(vinyl alcohol) as well as its grafted copolymer membranes with polyacrylonitrile (PAN‐g‐PVA) were prepared and used to separate water and dimethyl formamide mixtures by the pervaporation technique. The three following membranes were prepared: (1) pure PVA; (2) 46% grafted PAN‐g‐PVA; and (3) 93% grafted PAN‐g‐PVA. Pervaporation separation experiments were carried out at 25°C for the feed mixture containing 10 to 90% water. By use of the transport data, permeation flux, separation selectivity, swelling index, and diffusion coefficients have been calculated. By increasing the grafting of the membrane, flux decreased, whereas separation selectivity increased slightly over that of pure PVA membrane. Arrhenius activation parameters for transport processes were calculated for 10 mass % water containing feed mixture by using flux and diffusion data obtained at 25, 35, and 45°C. Transport parameters were discussed in terms of sorption‐diffusion principles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4091–4097, 2004  相似文献   

13.
Novel hydrophobic composite membranes made of crosslinked poly(dimethylsiloxane) and poly(methyl hydrogen siloxane) (PDMS–PMHS) with various amounts of catalyst were prepared. Pervaporation experiments with water–ethanol mixtures revealed that an optimum ratio of catalyst to polymer base existed. Both swelling behavior and dynamic–mechanical properties of these silicone films were studied. The swelling experiments in different mixtures of ethanol and water determined that ethanol is preferentially sorbed and that the membranes are only capable to absorb a limited quantity of solvent. Equilibrium swelling data were also used in combination with the analysis of the viscoelastic relaxation of the swollen samples to obtain the dependence of the dynamic–mechanical properties of the silicone films on the quantity of permeants sorbed into the membrane. It was observed that the permselective parameters were related with the mobility of the chains and the free volume. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1424–1433, 2000  相似文献   

14.
Homogeneous and composite aromatic polyetherimide membranes were prepared by casting from N-methylpyrrolidinone (NMP) solutions and by electrodeposition of polymer at the cathode, respectively. The membranes were evaluated for their sorption, diffusion and pervaporation separation of water from ethanol with emphasis on the breaking of azeotropic composition. The membrane performance was shown to be dependent on the feed concentration, but still selective towards water over the whole composition range of the feed mixture. By looking at the surface energy parameters, the determination of degree of swelling and the calculation of deviation coefficients (ε), an interesting insight was gained into the coupling effect in this solvent/membrane system. From the sorption, diffusion and temperature-dependent permeation behaviour, it could be concluded that in this system the diffusivity of permeant plays a major role in determining the pervaporation performance, rather than the solubility. © 1999 Society of Chemical Industry  相似文献   

15.
16.
Using a solution technique, polymeric composite membranes were prepared by the incorporation of NaY zeolite into chitosan. The resulting membranes were tested for pervaporation separation of water–tetrahydrofuran mixtures in a temperature range of 30–50°C. The effect of membrane swelling on the separation performance was studied by varying the water composition in the feed from 5 to 30 mass %. Pervaporation data demonstrated that both flux and selectivity increased simultaneously with increasing zeolite content in the membrane. This was explained on the basis of enhancement of hydrophilicity, selective adsorption, and establishment of molecular sieving action. It was found that both total flux and flux of water are close to each other, suggesting that the developed membranes are highly selective toward water. The membrane containing the highest loading of zeolite exhibited the highest separation selectivity of 2140 with a substantial water flux of 16.88 × 10?2 kg/(m2 h) at 30°C for 5 mass % of water in the feed. From the temperature dependency of diffusion and permeation data, the Arrhenius activation parameters were estimated. A significant difference was noticed between Epw and EpTHF, EDw and EDTHF values, signifying that membranes developed with higher loading of zeolite exhibited remarkable separation selectivity toward water. The Ep and ED values ranged between 11.69 and 21.23, and 11.21 and 20.72 kJ/mol, respectively. All the membranes exhibited positive ΔHs values, suggesting that the heat of sorption is still dominated by Henry's mode of sorption. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of soluble polyimides derived from 3,3′,4,4′‐benzhydrol tetracarboxylic dianhydride (BHTDA) with various diamines such as 1,4‐bis(4‐aminophenoxy)‐2‐tert‐butylbenzene (BATB), 1,4‐bis(4‐aminophenoxy)‐2,5‐di‐tert‐butylbenzene (BADTB), and 2,2′‐dimethyl‐4,4′‐ bis(4‐aminophenoxy)biphenyl (DBAPB) were investigated for pervaporation separation of ethanol/water mixtures. Diamine structure effect on the pervaporation of 90 wt% aqueous ethanol solution through the BHTDA‐based polyimide membranes was studied. The separation factor ranked in the following order: BHTDA–DBAPB > BHTDA–BATB > BHTDA–BADTB. The increase in molecular volume for the substituted group in the polymer backbone increased the permeation rate. As the feed ethanol concentration increased, the permeation rate increased, while the water concentration in the permeate decreased for all polyimide membranes. The optimum pervaporation performance was obtained by the BHTDA–DBAPB membrane with a 90 wt% aqueous ethanol solution, giving a separation factor of 141, permeation rate of 255 g m?2 h?1 and 36 000 pervaporation separation index (PSI) value. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Different polydimethylsiloxane (PDMS) nanocomposite membranes were synthesized by incorporating various contents of nanosized silica particles to improve the PDMS pervaporation (PV) performance. A uniform dispersion of silica nanoparticles in the PDMS membranes was obtained. The nanocomposite membranes were characterized morphologically by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that surface roughness increases by incorporating silica, and this decreases absorption of penetrants on the membrane. Swelling studies showed that the presence of silica nanoparticles into the PDMS membranes decreases degree of swelling, which can be attributed to rigidification of the PDMS matrix. Additionally, the results revealed that helium permeability decreases through the nanocomposite membranes, due to the more polymer chains packing. Effects of silica on recovery of isopropanol (IPA) from water mixtures were also investigated. Based on the results, incorporating silica nanoparticles promotes significantly the PDMS membrane selectivity because the polymer chains are rigidified and also the polymer free volume decreases. However, permeation flux decreases as diffusion of the penetrants reduces in the presence of silica nanoparticles within the PDMS membranes. As PV performance depends on operating conditions, effects of feed composition, and temperature were also studied. Moreover, recoveries of IPA, ethanol, and methanol from water mixtures were compared using the PDMS‐silica nanocomposite membranes. The results demonstrated that polarity and solubility of alcohols affect permeation flux and selectivity resulting in the higher permeation flux and selectivity for IPA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Polyimide–polyaniline nanocomposites were obtained by mixing poly{[4,4′‐bis(4″‐N‐phenoxy)diphenylsulfone]imide‐1,3‐bis(3,4‐dicarboxyphenoxy)benzene} (PI) and polyaniline (PANI) solutions in N‐methylpyrrolidone. These solutions were used for the preparation of homogeneous and composite membranes. Uniform distribution of PANI particles in the membranes, resulted from interactions between macromolecules, was confirmed by transmission electron microscopy. Membranes based on PI and PI–PANI were tested in pervaporation of binary organic mixtures: methanol/toluene and methanol/cyclohexane and showed a remarkable selectivity with respect to methanol. In both pervaporation processes, selectivity was improved in PANI‐containing membranes. Interactions between membrane polymers and liquid penetrants (methanol, toluene, and cyclohexane) were studied by measurements of surface tension, sorption, and pervaporation parameters. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
A series of pervaporation (PV) hybrid membranes were prepared via the crosslinking of poly(vinyl alcohol) with formaldehyde solution with N‐3‐(trimethoxysilyl) propyl ethylenediamine (TMSPEDA) as a hybrid precursor of the sol–gel process. Both the thermal stability and separation performances of the prepared hybrid membranes were investigated. Thermogravimetric analysis showed that the thermal degradation temperature of the hybrid membranes was beyond 250°C. Differential scanning calorimetry indicated that both the glass‐transition temperature and the crystallization temperature increased with elevated TMSPEDA contents in the hybrid membranes. PV experiments demonstrated that for membranes A–D, both the permeation flux and separation factor indicated the same trade‐off effect. Moreover, it was found that for individual membranes, the permeation flux increased as the feed temperature was increased. Meanwhile, the separation factor revealed an change trend opposite to that of the permeation flux. Furthermore, proper addition of TMSPEDA in the hybrid membrane was found to reduce the permeation activation energy. On the basis of these findings, we deduced that these hybrid membranes have potential applications in the separation of methanol/water mixtures. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号