首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion-exchange method was applied for cobalt(II) removal from acidic streams using Lewatit MonoPlus TP 220, Purolite A 830, Lewatit SR 7, Purolite S 984, Purolite A 400 TL, Lewatit AF 5, Dowex PSR 2, and Dowex PSR 3. The effects of phase contact time, acid concentration, initial Co(II) concentration, and temperature were evaluated. The cobalt(II) desorption, ion exchanger reuse, and attenuated total reflection with the Fourier transform infrared spectroscopy, column studies were also performed. Lewatit MonoPlus TP 220 exhibits the highest sorption capacities and sorption follows the pseudo-second-order kinetics. The Freundlich model fitted the experimental data adequately. Desorption of cobalt(II) loaded is not quantitative. Sorption capacity reduction after three cycles of sorption–desorption (static method) was not observed.  相似文献   

2.
ABSTRACT

Trace cobalt ion in the zinc sulfate electrolyte is the most difficult to be removed among all metallic impurities and has the most detrimental effect on zinc electrowinning. In this study, poly(p-hydroxystyrene) resin was first prepared from polystyrene, and then 1-nitroso-2-naphthol was grafted onto poly(p-hydroxystyrene) resin through -O- group by a series of reactions to obtain the 1-nitroso-2-naphthol-grafted-poly(p-hydroxystyrene) resin. Finally, the grafted resin was supported on SiO2. The supported resin could removal trace cobalt ions with good selectivity and reusability in the zinc sulfate leachate, which can meet the requirements of the industrial electrolytic zinc process.  相似文献   

3.
Nitrogen-enriched nanobiopolymer has been fabricated using (2,3-epoxypropyl) trimethylammonium chloride (EPTMAC) and explored for the removal of Cr(VI) from tannery effluent. The removal efficiency of nanobiopolymer was found to be 23.99 mg g?1 (95.94%) under optimized conditions. The sorption data agrees well with the Langmuir and pseudo-second-order model. Equilibrium parameter (RL) and sorption energy show the favorability and physical binding of Cr(VI) on the nanobiopolymer’s backbone. The values of ?G° (?7.84 kJ mol?1), ?S° (65.97 J mol?1K?1) and ?H° (11.82 kJ mol?1) reflect the feasible nature of the sorption process. Reusability study was also conducted to state the performance of the nanobiopolymer.  相似文献   

4.
In this study, we investigated the ability of a melamine‐based microporous polymer network as an adsorbent for removal of copper(II) species from aqueous solutions. A designed Schiff based network (SNW) with high specific surface area was synthesized using melamine and terephthalaldehyde monomers at 180 °C for 3 days followed by a freeze‐drying process. The porous structure of the material was confirmed by SEM analysis and CO2 adsorption/desorption studies at 77.3 K. The adsorption character of the SNW polymer for various metal salts, namely Pb(II), Fe(II), Hg(II), Zn(II), Ni(II) and Cd(II), was investigated and a specific sorption behaviour against Cu(II) salts was observed. The role of pH and contact time was examined and the highest adsorption capacity for Cu(II) was found as 92% with pH 3.5 at the end of 300 min. As evidenced by XRD and Fourier transform infrared spectral analysis, the sorption mechanism is attributed to the coordination system formed between amino groups in the porous structure and Cu(II) ions. Reusability of the system was also demonstrated by applying four cycles without any significant loss of activity. © 2016 Society of Chemical Industry  相似文献   

5.
A novel sulfur‐rich adsorbent, poly(BA‐ala‐co ‐sulfur), was synthesized by reacting allyl functional benzoxazine (BA‐ala) and elemental sulfur. Simultaneous inverse vulcanization and ring‐opening reactions of benzoxazine generated copolymers in several feed ratios. The adsorption behavior of these copolymers was investigated in aqueous solutions containing Hg2+. A three level Box–Behnken design with four factors was applied in order to examine the interactive effect of Hg2+ concentration (ppm), S % in adsorbent, temperature, and pH. The optimum adsorption conditions were determined as: 10.33 ppm Hg2+, 68% S content, 329 K, and pH 6.3. Common isotherm and kinetic models were applied to the experimental data, where the Langmuir isotherm provided the better fit (q max = 79.36 mg g?1) and the pseudo‐second order fit indicated chemisorption as the process‐controlling step. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45306.  相似文献   

6.
Biochar is increasingly used as a low-cost and effective adsorbent for heavy metals in wastewater. Herein, biochar pyrolyzed from rice straw was employed as an adsorbent for the removal of Th(IV) from aqueous solutions. The sorption of Th(IV) on biochar was strongly dependent on pH, but independent on ionic strength at pH < 6.4. The inner-sphere complexation dominated the sorption mechanism of Th(IV) on biochar. The competition for Th(IV) between aqueous or surface-adsorbed cations/anions and functional groups of biochar was pivotal for Th(IV) sorption. The thermodynamic data suggested that Th(IV) sorption was a spontaneous and endothermic process.  相似文献   

7.
The adsorption of 3-(3,4-dichlorophenyl)-1,1 dimethylurea (diuron) on bentonite desiccated at 110°C untreated, and acid treated with H2SO4 solutions over a concentration range between 0.25 M and 5.00 M, from aqueous solution at 30°C has been studied. In addition, adsorption of diuron on combined acid/heat treated samples (0.50 M and 2.50 M H2SO4/200°C and 400°C) has also been studied. The experimental data points have been fitted to the Freundlich equation in order to calculate the adsorption capacities (K) of the samples; K values range from 0.92 μg g?1 for the untreated bentonite up to 974.42 μg g?1 for the 0.50 M H2SO4/400°C acid/heat treated bentonite. The removal efficiency (R) has also been calculated; R values ranging from 2.02% for the untreated bentonite up to 97.17% for the 0.50 M H2SO4/400°C acid/heat treated bentonite. The adsorption experiments show that bentonite heat treatment is more effective than bentonite acid treatment in relation to adsorption of diuron.  相似文献   

8.
BACKGROUND: A core‐shell type carboxylic acid modified resin was prepared and dye sorption characteristics of the resin were investigated. The resulting grafted resin material has been shown to be an efficient sorbent for removal of basic dyes from water as a result of the carboxylic acid group's affinity towards basic dye molecules. RESULTS: The resin was characterized using Fourier transform infrared spectroscopy (FT‐IR) and titrimetric methods. The basic dyes (methylene blue and crystal violet) were removed by contacting the swollen resin with aqueous dye solutions at room temperature. The adsorption capacities of resin were determined by colorimetric analysis of the residual dye content in the adsorption medium, which gave capacities for methylene blue and crystal violet of 300 and 250 mg g?1 resin, respectively. The prepared resin is also able to remove basic dyes completely from dilute aqueous dye solutions. Batch kinetic sorption experiments determined that a pseudo‐second‐order rate kinetic model was applicable. CONCLUSION: Flexibility of the polymer side chains is expected to provide pseudo‐homogeneous reaction conditions and easy accessibility of the functional groups involved. The adsorbents are expected to have the advantage of mobility of the grafted chains in the removal of basic dyes from aqueous mixtures. The resin has potential as an adsorbent for removal of basic dyes for use over a wide pH range. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Graft copolymerization of acrylamide onto coconut husk (CH), initiated by the ferrous ammonium sulfate/H2O2 redox initiator system, was studied. To determine the optimum conditions of grafting, the effect of the concentrations of ferrous ammonium sulfate, the monomer, and H2O2 and the time and temperature on percentage of the graft yield was studied. A new adsorbent media having a carboxylate functional group was synthesized by the surface modification of polymer‐grafted coconut husk (PGCH COOH). The mechanism of graft polymerization and surface functionalization is proposed. The material exhibits a very high adsorption potential for Hg(II). The sorption of Hg(II) was found to be dependent on the contact time, concentration, pH, and temperature. Maximum removal of 99.4% with 2 g/L of the sorbent was observed at 125 μmol L−1 Hg(II) concentration at pH 6.0. The slow step which determines the rate of exchange of Hg(II) ions is diffusion through the adsorbent particles. The diffusion coefficients, energy of activation, and entropy of activation were calculated and used to determine the theoretical behavior of the sorption process. The applicability of the Langmuir isotherm established the endothermic character of the adsorption. Acid regeneration was tried for several cycles with a view to recover the adsorbed metal ions and also to restore the sorbent to its original state. The adsorbent efficiency toward Hg(II) removal was tested using synthetic and chloralkali industry wastewaters. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1261–1269, 2000  相似文献   

10.
BACKGROUND: There are a number of articles related to removal of boron by electrocoagulation using aluminium electrodes, but there are fewer articles describing the use of magnesium as the anode material. The main disadvantage of aluminium electrodes is the residual aluminium present in the treated water due to cathodic dissolution, which can create health problems. In the case of magnesium electrodes, there is no such disadvantage. This paper presents the results of studies on the removal of boron using magnesium and stainless steel as anode and cathode, respectively. RESULTS: Results show that a maximum removal efficiency of 86.32% was achieved at a current density of 0.2 A dm?2 and pH of 7 using magnesium as the anode and stainless steel as the cathode. The adsorption of boron fitted the Langmuir adsorption isotherm, suggesting monolayer coverage of adsorbed molecules. The adsorption process follows second‐order kinetics. Temperature studies showed that adsorption was endothermic and spontaneous in nature. CONCLUSIONS: The magnesium hydroxide generated in the cell remove the boron present in the water and reduced to a permissible level and making it drinkable. The process scale up results was consistent with the results obtained from the laboratory scale, showing the robustness of the process. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
In this study, a porous organic triazine‐based polyimide (PPI network) was prepared from 2,4,6‐tris(hydrazino)‐s‐triazine and 3,4,9,10‐perylenetetracarboxylic dianhydride. TGA, Fourier transform infrared spectroscopy, field emission SEM, XRD and a nitrogen sorption study confirmed the PPI network structure. Then, the synthesized PPI network was used to evaluate Ni2+ ion removal from aqueous solution and the effective parameters on adsorption functions of Ni2+ ions such as initial concentration, contact time and pH of the solution in batch adsorption experiments was studied. The results showed that the maximum adsorption capacity (qm) of Ni2+ ions was 36.1 mg g?1 in only 30 min with a pH of 7. The kinetics and adsorption isotherm were identified to be better fitted by the pseudo‐second‐order model and the Langmuir model, respectively. Based on the results, the proposed adsorbent has good potential for removing Ni2+ ions from aqueous solutions. © 2019 Society of Chemical Industry  相似文献   

12.
固定床脱除液化石油气中的硫醇   总被引:6,自引:0,他引:6  
徐国庆  肖梅 《工业催化》2002,10(5):23-25
综述了有关固定床脱除液化气中硫醇的新技术,指出了各种方法的优缺点,并认为催化氧化吸收法是液化气脱硫醇的发展方向。  相似文献   

13.
Filtration efficiency of Ni(II) from aqueous solution using pristine and modified MWCNTs filters was investigated as a function of Ni(II) ion concentration, pH, and filter mass. MWCNTs were synthesized by CVD method and modified using two complementary treatments, purification (using a mixture of hydrochloric acid and hydrogen peroxide) and functionalization (using nitric acid). The effect and mechanism of each treatment on the structural integrity of pristine MWCNTs has been studied. Morphology of the pristine and modified filters was investigated by Raman Spectrometry (RS), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared (FTIR) spectrometry and Thermogravimetric analysis. It was found from Raman spec-tra that the ratio of the intensity of D-band to that of G-band decreased by purification process, and increased by functionalization process. The adsorption mechanism of Ni(II) onto the surface functional groups of modified MWCNTs was confirmed by FTIR spectrum. The filtration results showed that the removal efficiency of Ni(II) is strongly dependent on pH and could reach 85%at pH=8. Also, modified MWCNT filters can be reused through many cycles of regeneration with high performance. Functionalized MWCNTs filters may be a promising adsor-bent candidate for heavy metal removal from wastewater.  相似文献   

14.
In an attempt to evaluate the suitability of activated sludge for Pb2+ removal, a comparative study was carried out using several chemical adsorbents and three types of biomass. The order of Pb2+ removal capacities for chemical adsorbents was found to be: ion exchange resin > zeolite > granular activated carbon (GAC) > powdered activated carbon (PAC), while for biomass the order was Aureobasidium pullulans > Saccharomyces cerevisiae > activated sludge. Although Pb2+ removal capacity (mg Pb2+ g−1) of the activated sludge (30.9) was lower than those of the ion exchange resin (167.7) and other pure cultures of A pullulans (170.4) and S cerevisiae (95.3), it was higher than those of other chemical adsorbents such as GAC (26.0), PAC (2.1), and zeolite (30.2). The initial Pb2+ removal rates for the chemical adsorbents were in the order of PAC > GAC > zeolite > ion exchange resin, while for the biomass samples it was A pullulans > activated sludge > S cerevisiae. The initial Pb2+ removal rate of activated sludge was higher than those of GAC, zeolite, ion exchange resin and S. cerevisiae cells. Therefore, it was concluded that activated sludge that has been used in a municipal wastewater facility can be effectively used in heavy metal removal processes, in situ. © 2000 Society of Chemical Industry  相似文献   

15.
A new method to obtain hydroxylated poly(vinyl chloride) (PVC‐OH) and its crosslinking in the melt are studied. Starting from a vinyl chloride‐co‐vinyl acetate copolymer, a transesterification reaction in the presence of an alcohol during the processing of plasticized polymer is investigated as a function of the processing temperature and alcohol nature (1‐butanol or 1‐octanol). Reaction evolution is followed by 1H‐NMR and IR spectroscopies. The best results are obtained for 1‐octanol, and they show the absence of secondary reactions and the progressive appearance of OH groups in the polymer as acetate groups disappear. On the other hand, crosslinking of the thus‐obtained PVC‐OH with hexamethylene diisocyanate (HMDI) during the processing is also studied. The gel content and the mechanical properties at 140°C are studied as a function of three crosslinking variables: number of OH groups present in the polymer, concentration of HMDI added to the polymer, and time of crosslinking. The results show that by optimizing those parameters it is possible to obtain gel contents up to 100% and an increase of 600% in the Young's modulus and 1300% in the ultimate tensile strength with respect to the plasticized PVC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 621–630, 1999  相似文献   

16.
17.
A novel fibrous adsorbent that grafts glycidyl methacrylate (GMA) and methacrylic acid (MAA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers was used for removal of methylene blue (MB) in aqueous solutions by a batch equilibration technique. The operation parameters investigated included, pH of solution, removal time, graft yield, dye concentration, and reaction temperature. The adsorption rate of MB is much higher on the MAA/GMA‐grafted PET fibers than on the ungrafted PET fibers. MB was removed 99% the initial dye concentration at 10 mg L−1 and 93% at 200 mg L−1 by monomers mixture‐grafted PET fibers. Pseudofirst order and pseudosecond order kinetic equations were used to examine the experimental data of different graft yield. It was found that the pseudosecond order kinetic equation described the data of dye adsorption on fibrous adsorbent very well. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm models. The data was that Freundlich isotherm model fits the data very well for the dyes on the fibers adsorbent. The dye adsorbed was easily desorbed by treating with acetic acid/methanol mixture (50% V/V) at room temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Polyethylenimine-modified sugarcane bagasse cellulose (SBCMP), as a new adsorbent, was synthesized by the reaction of polyethylenimine (PEI) with sugarcane bagasse cellulose and glutaraldehyde. The adsorption of Cu(II) by SBCMP was pH-dependent, and the higher removal efficiency of Cu(II) appeared in the range of pH 3.0–6.0. The adsorption isothermal data fitted well with the Langmuir model, and the maximum adsorption capacity of SBCMP was up to 107.5 mg/g. The adsorption kinetics was best described by the pseudo-second-order kinetic. The adsorption of Cu(II) by SBCMP was unfavorable at high temperatures, and thermodynamic analyses implied that the adsorption of Cu(II) by SBCMP was an exothermic reaction. Fourier transform infrared spectroscopy (FT-IR) combined with X-ray photoelectron spectroscopy (XPS) revealed that Cu(II) adsorption on SBCMP mainly controlled by the nitrogen atoms of  NH group in PEI. The results of regeneration cycles showed that SBCMP was suitable for reuse in the adsorption of Cu(II) from aqueous solution. These experimental results suggested that SBCMP is expected to be a new biomass adsorbent with high efficiency in removing Cu(II) from wastewater.  相似文献   

19.
This study describes the successful recovery of 2,4‐dichlorophenol (DCP) from wastewater using the Membrane Aromatic Recovery System (MARS). In the MARS process a non‐porous membrane separates a wastewater stream and a stripping solution. DCP is extracted from the wastewater and concentrated in its ionic form in the stripping solution, with pH ? pKa DCP. The MARS extraction stage was operated in batch mode with the stripping solution placed inside, and the wastewater stream outside, the membrane tubes. Advantages of this configuration are avoidance of membrane blockage, reduction of stripping solution volume and operational flexibility. The stability and mass‐transfer characteristics of two different membrane materials, poly(dimethylsiloxane) (PDMS) and ethylene–propylene diene terpolymer (EPDM), were tested in DCP solutions with different acidities in order to simulate real industrial waste streams. EPDM exhibits one order of magnitude lower mass‐transfer rates than PDMS (1.4 × 10?7 m s?1 vs 20 × 10?7 m s?1 at 30 °C and 2.4 × 10?7 m s?1 vs 39 × 10?7 m s?1 at 60 °C), however its higher resistance to acid attack provides higher membrane lifetimes. This can be crucial for MARS processes treating real acidic industrial wastewater. A 97% recovery of DCP with a water content of 15 wt% was obtained upon neutralisation of the stripping solution. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号