首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic wet air oxidation (CWAO) of phenol with iron/activated carbon catalysts (Fe/AC) at temperature of 400 K and 8 atm of total pressure is an efficient treatment to oxidize a resistant pollutant such as phenol into biodegradable species, mainly short chain acids. Extended studies employing activated carbon catalysts point out significant changes in the carbon as a consequence of the CWAO process. After the long-term experiments carried out in this work it was concluded that these modifications consist of loss of microporosity, temporary decrease of the mesoporosity, decrease of the carbon/oxygen ratio on the catalyst surface, more acidic pHslurry values, and aggregation of the -Fe2O3 crystallites. The causes that provoke these changes and the reasons why they do not alter significantly the CWAO efficiency were analyzed. The way of exposition of Fe/AC catalyst to the reactants plays an important role in its activity and selectivity towards complete mineralization, namely oxidation to CO2 and H2O.  相似文献   

2.
The catalytic activities of the iron catalysts over activated carbon supports prepared by different activation methods in the heterogeneous Fenton-like oxidation of Procion Red MX-5B were investigated. The activated carbons were prepared from walnut shells by applying physical and three chemical activation methods, including HNO3, ZnCl2, and KOH activations to obtain various catalyst supports. KOH-activated carbon catalyst was assessed to be the most efficient one. Under the optimum reaction conditions, 47.5% COD removal, 51.6% degradation, and 91.6% decolorization efficiencies were achieved in the presence of this catalyst. In the kinetic study, the activation energy was evaluated as 47.36 kJ/mol.  相似文献   

3.
A series of coconut shell activated carbon catalysts, modified by metal oxides, were prepared by an ultrasound-assisted incipient wetness method for the removal of methyl mercaptan (CH3SH). The catalysts were investigated using XRD, BET, XPS, TEM and TA.The results showed that the catalyst combined with 2 wt% Fe loading and iron (Fe): copper (Cu) (mole ratio) 10 : 3, and calcination at 300 °C had a superior removal efficiency. The high activity could be attributed to the generation of highly dispersed Fe-Cu nanocomposites. The results revealed that calcination temperature not only influenced the chemical states and nanocomposite size of iron and copper, but also affected the pore structures of the catalysts. Compared with Fe/AC, the interaction between the iron and copper oxides resulted in smaller nanoparticles and high dispersion for Fe-Cu/AC. Product analysis results suggested dimethyl disulfide, metal methanesulfonates and methyl thiolates were the oxidation products which adsorbed on the activated carbon.  相似文献   

4.
以活性焦(AC)为载体、Fe和Ce为活性组分,采用等体积浸渍法制备了Fe2O3/AC和Ce?Fe2O3/AC催化剂,研究了Fe含量及Ce掺杂对Fe2O3/AC催化剂低温脱硝性能的影响,并对催化剂进行了表征. 结果表明,当Fe负载量为6wt%时,Fe2O3/AC催化剂的NOx转化率最高,240℃下达93.9%. 掺杂Ce后Ce?Fe2O3/AC催化剂的催化效率明显提高,当质量比Ce:Fe=0.5:6时,NOx转化率较高,120~200℃下NOx转化率比负载6wt% Fe的催化剂提高了5%?20%,且抗硫性能较好,240℃下通入100?10?6(vol) SO2,NOx转化率稳定在94.1%. 掺杂少量Ce可使γ-Fe2O3均匀分散在催化剂表面,且表面吸附氧Oα比例增大,催化剂的还原性增强,促进了选择性催化还原反应进行.  相似文献   

5.
BACKGROUND: A highly stable Fe/γ‐Al2O3 catalyst for catalytic wet peroxide oxidation has been studied using phenol as target pollutant. The catalyst was prepared by incipient wetness impregnation of γ‐Al2O3 with an aqueous solution of Fe(NO3)3· 9H2O. The influence of pH, temperature, catalyst and H2O2 doses, as well as the initial phenol concentration has been analyzed. RESULTS: The reaction temperature and initial pH significantly affect both phenol conversion and total organic carbon removal. Working at 50 °C, an initial pH of 3, 100 mg L?1 of phenol, a dose of H2O2 corresponding to the stoichiometric amount and 1250 mg L?1 of catalyst, complete phenol conversion and a total organic carbon removal efficiency close to 80% were achieved. When the initial phenol concentration was increased to 1500 mg L?1, a decreased efficiency in total organic carbon removal was observed with increased leaching of iron that can be related to a higher concentration of oxalic acid, as by‐product from catalytic wet peroxide oxidation of phenol. CONCLUSION: A laboratory synthesized γ‐Al2O3 supported Fe has shown potential application in catalytic wet peroxide oxidation of phenolic wastewaters. The catalyst showed remarkable stability in long‐term continuous experiments with limited Fe leaching, < 3% of the initial loading. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
To assess the mineralization level achieved, aqueous solutions of phenol have been treated with ozone in the presence of different solid catalysts. Activated carbon was the principal catalyst investigated, although some additional experiments were carried out by utilizing metal oxide‐based catalysts (ie Ti, Co and Fe) supported onto alumina. Usage of Co/Al2O3 led to the highest values of phenol byproduct mineralization, nevertheless some metal leaching was experienced in the process. The operating variables studied when using activated carbon as the catalyst were ozone gas concentration, amount of catalyst added and temperature. Regardless of the catalyst type used, two different ozonation kinetic regimes were observed: (I) an initial period, corresponding to the presence of phenol in solution, characterized by small amounts of dissolved ozone and no improvement of the mineralization degree if comparing catalytic and non‐catalytic runs; (II) a second period, free of phenol, in which dissolved ozone accumulated in water and the beneficial effects of catalysts on mineralization were noticed. Experimental data also demonstrated the improvement in oxalic acid elimination in the presence of heterogeneous catalysts. Finally, consumption of ozone per mass of carbon removed, reaction factors and Hatta numbers were also calculated. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
以典型煤基活性炭为载体、椰壳活性炭为对比,采用溶胶-凝胶法制备了活性炭负载的TiO2光催化剂(TiO2/AC),应用X射线衍射、扫描电镜、紫外-可见漫反射光谱和低温N2吸附等对复合光催化剂的晶相组成、表面形貌、孔结构等进行了表征,选取苯酚为模型化合物考察了复合光催化剂的光催化降解能力,并研究了活性炭种类及颗粒形貌对复合光催化剂活性的影响。结果表明,m(TiO2):m(AC)相同的条件下,TiO2在煤基活性炭上的负载率小于椰壳活性炭;其中,比表面积适中,大、中孔比例高的褐煤基活性炭更适合于作为光催化剂TiO2的载体;煤基复合光催化剂对于苯酚光催化降解效果优于椰壳基复合催化剂,对苯酚的降解效率优于等量的P25,达80%以上。  相似文献   

8.
胡瑞萍 《化学世界》2006,47(8):467-469
研究了助剂Li对CO2气氛下活性炭负载的Fe氧化物(Fe/AC)催化剂上的乙苯脱氢性能的影响和CO2的作用。助剂Li的添加提高了Fe/AC催化剂在CO2气氛下的乙苯脱氢活性和稳定性;CO2气氛下的苯乙烯收率明显高于N2气氛下,表明CO2显著促进了乙苯脱氢反应。  相似文献   

9.
Fe/AC催化过氧化氢降解双酚A   总被引:2,自引:1,他引:2       下载免费PDF全文
周文  程治良  全学军  陈波 《化工学报》2013,64(3):936-942
传统Fenton反应存在对液相pH要求较高、Fe3+回收困难以及难以重复使用等问题。基于"活性离子固载化,酸性环境局部化"的设计思路,通过对活性炭(AC)表面酸化改性,制备得到载铁活性炭(Fe/AC)催化剂。研究了Fe/AC制备工艺与其性能之间的关系,结果表明,在载Fe3+量44.05 mg·g-1、煅烧温度200℃的制备工艺下可得到催化活性较高、稳定性好的Fe/AC催化剂。用性能优良的Fe/AC催化H2O2降解双酚A(BPA),其较佳催化反应条件为:反应时间60 min、反应温度20℃、溶液pH值为4.0≤pH≤8.0、Fe3+/H2O2摩尔比为0.007~0.012、30% H2O2用量为0.04 ml H2O2·(mg BPA)-1。本工作制备得到的Fe/AC催化剂具有较好的重复使用性能,在实际废水处理领域具有较大的应用前景。  相似文献   

10.
Adsorption capacity and bioactivity of a novel mesoporous activated carbon (IIT Carbon) and bioactive (BACIIT) catalyst produced from papermill sludge were evaluated. Conversion of paper mill sludge to useful activated carbons and biocatalysts is a significant process since it reduces environmental problems associated with disposal of waste sludge, enhances wastewater treatment using carbons produced from industrial waste itself, and promotes conservation of the naturally available primary resources currently used to make activated carbons. Analysis was conducted using synthetic wastewater containing phenol and a commercially available activated carbon, sorbonorite 4 (used as reference carbon). Phenol removal was accomplished in batch and fluidized bed reactors containing mesoporous activated carbon, sorbonorite 4, and the produced bioactive catalysts. Isotherm adsorption data indicated that mesoporous activated carbon has a higher adsorption capacity and molecular surface coverage than sorbonorite 4 for phenol concentrations less than 10 mg/l. The mass transfer limitation was accounted for the lower adsorption capacity of the microporous carbon (sorbonorite 4) in dilute solutions. The fluidized bed reactor study, however, indicated similar but slightly lower phenol removal capability for the produced mesoporous carbon. While phenol removal efficiency of the carbons studied was in the range 65–70%, the produced bioactive catalysts were able to remove up to 97% of phenol during first few hours of operation. These results suggest that mesoporous carbon will feasibly be a good substitute for other commercially available activated carbons produced from natural resources, not only in physical adsorption processes, but also in fluidized bed bioreactors (FBB), used in biodegradation processes.  相似文献   

11.
Supported molybdenum/molybdenum‐phosphides as inexpensive catalysts for bio‐oil hydrodeoxygenation (HDO) were in‐house prepared using different support materials, i.e., Al2O3, activated carbon (AC), MgAl2O4, and Mg6Al2(CO3)(OH)16. The HDO activity of these catalysts were investigated using a 100 mL bench‐scale reactor operating at 300°C with an initial hydrogen pressure of 50 bar for 3 h with a pyrolysis oil (PO). The catalytic efficiencies for bio‐oil HDO for the catalysts were compared with the expensive but commercially available Ru/C catalyst. Addition of small amount of P to the Mo catalysts supported on either AC and Al2O3 led to increased degree of deoxygenation (DOD) and oil yield compared with those without P. MoP supported on AC (MoP/AC) demonstrated bio‐oil HDO activity comparable to the Ru/C catalyst. Furthermore, three AC‐supported metal phosphides for PO HDO were compared under the same conditions, and they were found to follow the order of NiP/AC > CoP/AC > MoP/AC. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3664–3672, 2016  相似文献   

12.
The catalytic performance of various steam-activated [Fe,Al]MFI catalysts in the direct oxidation of benzene to phenol using N2O as oxidant is described. All [Fe,Al]MFI catalysts contain ca. 90% of iron in the high-spin Fe2+ state, independent of the iron concentration (0.075–0.6 wt.% iron). In the presence of N2O at 623 K, most Fe2+ ions (>90%) were oxidized to Fe3+ ions as deduced from Mössbauer spectroscopy. In the presence of benzene, subsequent reduction of Fe3+ to Fe2+ takes place. However, not all of the oxidized Fe2+ to Fe3+ ions were able to selectively oxidize benzene to phenol. This indicates that only a fraction of iron is catalytically active. For [Fe,Al]MFI catalysts with relatively high iron concentration, most of the extra-framework iron species formed are inactive in the direct oxidation of benzene to phenol. Finally, a more detailed in situ Mössbauer study for one sample, i.e. [Fe,Al]MFI (1:8) catalyst, was performed to illustrate the reduction/oxidation properties of the different iron species formed after steam-treatment.  相似文献   

13.
Different iron-containing catalysts have been tested for the oxidation of phenol aqueous solutions in a catalytic fixed bed reactor in the presence of hydrogen peroxide. All the catalysts consist of iron oxide, mainly crystalline hematite particles, over different silica supports (mesostructured SBA-15 silica and non-ordered mesoporous silica). The immobilization of iron species over different silica supports was addressed by direct incorporation of metal during the synthesis or post-synthesis impregnation. The synthesis conditions were tuned up to yield agglomerated catalysts with iron loadings between 10 and 15 wt.%. The influence of the preparation method and the type of silica support was evaluated in a catalytic fixed bed reactor for the continuous oxidation of phenol in terms of catalysts activity (phenol and total organic carbon degradation) as well as their stability (catalyst deactivation by iron leaching). Those catalysts prepared by direct synthesis, either in presence of a structure-directing agent (Fe2O3/SBA-15(DS)) or in absence (Fe2O3/SiO2(DS)), achieved high catalytic performances (TOC reduction of 65% and 52%, respectively) with remarkable low iron leaching in comparison with their silica-based iron counterparts prepared by impregnation. Catalytic results have demonstrated that the synthesis method plays a crucial role in the dispersion and stability of active species and hence resulting in superior catalytic performances.  相似文献   

14.
程爱华  马万超  徐哲 《化工进展》2020,39(2):798-804
采用低温等离子体技术对海绵铁表面进行改性,并将其用于活化过硫酸盐(PS)处理含酚废水。通过氮气等温吸附(BET)、X射线衍射(XRD)和扫描电子显微镜(SEM)等手段对改性前后的海绵铁进行表征分析。以苯酚为目标污染物,通过静态实验考察催化剂投加量、催化剂/PS摩尔比、pH和苯酚初始浓度对等离子体改性海绵铁活化PS处理含酚废水的影响。结果表明,改性后的海绵铁比表面积、孔容及孔径均有增大,活化PS能力显著提高;在最佳反应条件(等离子改性海绵铁的投加量为0.4g/L,催化剂/PS摩尔比为1∶15,溶液pH为2,苯酚的初始浓度为250mg/L)下,苯酚的去除率可达95%;反应过程符合二级反应动力学,主要是硫酸根自由基和羟基自由基起氧化作用。等离子体技术改性海绵铁活化过硫酸钠可有效去除水中苯酚,为实际含酚废水的处理提供一些思路。  相似文献   

15.
Catalytic oxidative desulfurization (Cat-ODS) of benzothiophene (BT) in n-octane has been investigated with hydrogen peroxide (H2O2) over catalysts of activated carbon (AC) supported iron oxide under mild conditions. The catalyst was characterized by N2 adsorption, XRD, SEM/EDS, TPR and XPS. Under the best operating condition for the catalytic oxidative desulfurization—temperature 60 °C, atmospheric pressure, 0.15 g Fe/AC, 18 molar ratio of hydrogen peroxide to sulfur, using acetonitrile as extraction solvent for double extraction—the sulfur content in model diesel fuel (MDF) was reduced from 700 ppmw to 30 ppmw with 95.66% of total sulfur was removed.  相似文献   

16.
The dehydrogenation of ethylbenzene to styrene over unpromoted and potassium-promoted model iron oxide catalysts has been studied using ultrahigh vacuum techniques in conjunction with elevated pressure reaction kinetics. Model iron oxide catalysts were prepared by oxidizing a polycrystalline Fe sample that was subsequently dosed with metallic potassium. At 875 K the unpromoted catalyst exhibited a turnover frequency of 5×10–4 molecules/ site s and an activation energy of 39 kcal/mol, both in excellent agreement with the results found for an analogous iron oxide powder catalyst. Potassium promotion increased the turnover frequency to 1.0×10–3 molecules/site s and lowered the activation energy to 36 kcal/mol for the dehydrogenation reaction. Similarities between the activation energies on the unpromoted and promoted catalysts indicate that the active site is the same on both catalysts. Creation of the active site was dependent upon the formation of an Fe3+ metastable species, consistent with the formation of a KFeO2 phase, upon the addition of potassium.  相似文献   

17.
Ordered mesoporous carbons (OMCs) were used as supports to prepare Wacker‐type catalysts for diethyl carbonate (DEC) synthesis by oxidative carbonylation of ethanol in a gas‐phase reaction. The effect of support structure on the dispersion of the active species and catalytic properties were investigated. Nitrogen sorption, X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that the active components have encapsulated in pore channels of OMCs. Characterizations of the catalysts, such as TEM, scanning electron microscope (SEM) and XRD, indicated that active components supported on OMCs have better dispersion compared to activated carbon (AC). The ethanol conversion of the catalysts was improved by ~65% using OMCs as the catalyst support than AC. The stability of the catalytic activity can also be enhanced through surface modification of OMCs. Surface oxygen‐containing groups (OCGs) on OMCs before and after surface modification were characterized by transmission IR spectra and the Beohm titration. The relationship between surface OCGs and anchor ability of OMCs was studied. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3797–3805, 2013  相似文献   

18.
The effects of the particle size of a Fe/Cu/K catalyst on CO and CO2 hydrogenation reactions as well as the variation of crucial factors such as surface area and basicity, reduction, carburization, and catalytic behavior of precipitated Fe/Cu/K catalysts were evaluated. Hematite nanoparticle catalysts with various surface tensions were produced by homogeneous precipitation in alcohol/water solvents. The basicity of the K‐promoted iron catalyst was higher in iron catalysts with lower particle size. The increase in K‐basic sites at the surface of catalysts with smaller particle size was attributed to their higher surface areas. Elevation of catalyst basicity led to considerably stronger dissociative CO adsorption. Shifting the oxygen removal pattern to lower temperature was the consequence of faster nucleation of FeCx crystallites on promoted surface oxides. CO2 hydrogenation can occur in two distinct direct and indirect routes via the Fischer‐Tropsch mechanism.  相似文献   

19.
以对甲基苯硫酚为模型底物,空气为氧化剂,来研究硫醇水相催化氧化偶联制备二硫醚。以活性炭为载体,采用等体积浸渍法制备了一系列负载型氧化物催化剂,并考察了其在对甲基苯硫酚氧化偶联制备对甲苯二硫醚反应中的催化性能。反应结果表明,活性炭负载的铁氧化物具有最佳催化性能。采用N2物理吸附、X射线衍射、X射线光电子能谱和透射电镜等表征手段对活性炭负载的铁氧化物催化剂进行了表征。表征结果表明,铁氧化物为高度分散在活性炭上的Fe2O3物种。以Fe2O3/AC为催化剂,当催化剂焙烧温度为400℃,Fe负载量为5%,在50℃下反应30min时,对甲苯二硫醚的收率高达97.4%;该催化剂循环使用5次后活性无明显下降。  相似文献   

20.
《分离科学与技术》2012,47(2):300-308
The potential use of different activated carbons (ACs) prepared from dates pits and phosphoric acid for the removal of phenol from aqueous solutions was investigated. Date pits were converted into five different types of activated carbons by air and phosphoric acid activation. The specific surface area (BET) of the prepared ACs varied from 794 m2/g, for the phosphoric acid:date pit ratio of 5:1, to 1707 m2/g for a ratio of 2:1. Batch adsorption experiments revealed that the adsorption of phenol varied among all of the prepared ACs, where the 2:1 AC showed the highest uptake. Equilibrium pH studies showed that the phenol removal was pH dependent and the maximum phenol uptake occurred at an equilibrium pH of 3.0. Dynamics studies indicated that the initial uptake of phenol on 2:1 AC at pH 4 was rapid, where 80% of the maximum uptake was achieved during the first 30 minutes; both surface adsorption and intraparticle diffusion were involved in the adsorption process and the data followed the pseudo second-order reaction. The equilibrium adsorption data of phenol on 2:1 AC at solution pH 3 was best described by the Redlich-Peterson, Sips, and Langmuir models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号