首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The phase behavior of temperature‐responsive hydrophobically modified starches and the interaction between oxidized potato amylose and hydrophobically modified potato amylopectin have been investigated by rheology, turbidity measurements and differential scanning calorimetry. When oxidized amylose was mixed with hydrophobically modified amylopectin, a viscosity peak was observed, indicative of a guest‐host interaction between the oxidized amylose and the hydrophobically modified amylopectin. A series of oxidized and hydrophobically modified potato starches were investigated in the presence of an anionic and cationic surfactant. A coil‐helix transition of the investigated starches was observed in the presence of surfactant, with the exception of a cationic surfactant combined with a hydrophobically modified zwitterionic starch of high positive net charge. The destabilizing mechanism (the phase separation) of the hydrophobically modified starches was studied as well as the difference in stabilizing capacity between the investigated cationic and anionic surfactants.  相似文献   

7.
8.
9.
10.
Soy sauce, a dark‐colored seasoning, is added to enhance the sensory properties of foods. Soy sauce can be consumed as a condiment or added during the preparation of food. There are 3 types of soy sauce: fermented, acid‐hydrolyzed vegetable protein (acid‐ HVP), and mixtures of these. 3‐Chloropropane‐1,2‐diol (3‐MCPD) is a heat‐produced contaminants formed during the preparation of soy sauce and was found to be a by‐product of acid‐HVP‐produced soy sauce in 1978. 3‐MCPD has been reported to be carcinogenic, nephrotoxic, and reproductively toxic in laboratory animal testing and has been registered as a chemosterilant for rodent control. 3‐MCPD is classified as a possible carcinogenic compound, and the maximum tolerated limit in food has been established at both national and international levels. The purpose of this review is to provide an overview on the detection of 3‐MCPD in soy sauce, its toxic effects, and the potential methods to reduce its concentration, especially during the production of acid‐HVP soy sauce. The methods of quantification are also critically reviewed with a focus on efficiency, suitability, and challenges encountered in analysis.  相似文献   

11.
12.
13.
14.
15.
Ellagitannins are polyphenols abundant in strawberries, raspberries, and cloudberries. The effects of a mixture of these berries were studied in a randomized controlled trial with subjects having symptoms of metabolic syndrome. The study focused on serum lipid profiles, gut microbiota, and ellagitannin metabolites. The results indicate that bioavailability of ellagitannins appears to be dependent on the composition of gut microbiota.  相似文献   

16.
17.
18.
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N‐glycosylation of proteins such as N‐acetyl‐β‐d ‐glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)‐mediated inhibition of N‐linked glycosylation on α‐ and β‐(1,3)‐glucanases and on α‐(1,4)‐amylase in P. brasiliensis yeast and mycelium cells. The addition of 15 µg/ml TM to the fungal cultures did not interfere with either α‐ or β‐(1,3)‐glucanase production and secretion. Moreover, incubation with TM did not alter α‐ and β‐(1,3)‐glucanase activity in yeast and mycelium cell extracts. In contrast, α‐(1,4)‐amylase activity was significantly reduced in underglycosylated yeast and mycelium extracts after exposure to TM. In spite of its importance for fungal growth and morphogenesis, N‐glycosylation was not required for glucanase activities. This is surprising because these activities are directed to wall components that are crucial for fungal morphogenesis. On the other hand, N‐glycans were essential for α‐(1,4)‐amylase activity involved in the production of malto‐oligosaccharides that act as primer molecules for the biosynthesis of α‐(1,3)‐glucan. Our results suggest that reduced fungal α‐(1,4)‐amylase activity affects cell wall composition and may account for the impaired growth of underglycosylated yeast and mycelium cells. © 2013 The Authors. Yeast published by John Wiley & Sons Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号