首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The variation of free‐volume parameters (lifetime, intensity, and distribution) after sorption and desorption of CO2 and CH4 gases in the glassy polymer poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP) and in the rubbery high‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) were determined by the PAL technique. Size distributions deduced from PAL measurements reveal the presence of large free‐volume holes in PTMSP with an average size of 0.725 nm3 and intensity of 22% in addition to a free‐volume hole size of 0.197 nm3 with an intensity of 11%. In polyethylene free‐volume hole sizes of 0.107 and 0.153 nm3 with intensities of 21% and 25% could be deduced for HDPE and LDPE, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 970–974, 2001  相似文献   

2.
The biotransformation of l‐menthol was investigated by using nine isolates of Rhizoctonia solani (AG‐1‐IA Rs24, Joichi‐2, RRG97‐1; AG‐1‐IB TR22, R147, 110.4; AG‐1‐IC F‐1, F‐4 and P‐1) as a biocatalyst. In the cases of Rhizoctonia solani F‐1, F‐4 and P‐1, almost all of the substrate was consumed in 3 days and the major metabolite increased rapidly for the first of 3 days incubation. The structure of the major metabolite was elucidated on the basis of its spectral data. The major metabolite was determined to be (?)‐(1S,3R,4S,6S)‐6‐hydroxymenthol which indicated that l‐menthol was hydroxylated at the C‐6 position. From the main component analysis, the nine isolates of Rhizoctonia solani were divided into two groups based on their ability to transform l‐menthol to (?)‐(1S,3R,4S,6S)‐6‐hydroxymenthol. This is the first report on the biotransformation of l‐menthol by Rhizoctonia solani. © 2001 Society of Chemical Industry  相似文献   

3.
Various metallocenes, including bis(η5‐cyclopentadienyl)cobalt, bis(η5‐cyclopentadienyl)nickel, and bis(η5‐cyclopentadienyl)titanium dichloride, combined with various reducing agents, including n‐butyllithium, phenyllithium, and triethylaluminum, have been evaluated for their catalytic efficiencies in the hydrogenation of polystyrene‐b‐polybutadiene‐b‐polystyrene (SBS) block copolymer. The efficiencies were determined by monitoring the extent of saturation of double bonds on the polybutadiene segment of the copolymer using FTIR and 1H‐NMR spectroscopy. The cobaltocene/n‐butyllithium catalyst system was found the most active. The effects of H2 pressure and the ratio of n‐butyllithium to cobaltocene ratio on the hydrogenation efficiency were also investigated. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1807–1815, 1999  相似文献   

4.
The hybrid anaerobic solid–liquid (HASL) system was developed to be used in industrial‐scale operations to minimize the amount of food waste for disposal in Singapore. Thermal pre‐treatment of food waste at 70 °C for 2 h (experiment E1) or at 150 °C for 1 h (experiment E2) facilitated the hydrolytic and acidogenic processes in the acidogenic reactor and methanogenesis in the methanogenic reactor in the HASL system. The highest dissolved chemical oxygen demands in the effluents from the acidogenic reactors were 17 575, 19 980 and 24 235 mg dm?3 in the control with food waste without thermal pre‐treatment and experiments E1 and E2, respectively. The maximum concentrations of methanogens in the methanogenic reactor were 2.3 × 107, 3.8 × 107, 4.3 × 107 cells cm?3 for the control and experiments E1 and E2, respectively. However, the performances of the methanogenic phase in terms of specific activity of methanogens did not differ significantly for the control and experiments E1 and E2. Use of thermally pre‐treated food waste halved the time to produce the same quantity of methane in comparison with anaerobic digestion of fresh food waste. The fluorescent measurements of co‐enzyme F420 and oligonucleotide probe Arc915 specifically bound (hybridized) with 16S rRNA were used for monitoring of methanogens during anaerobic digestion of food waste. There was a linear correlation between these parameters and the concentration of methanogens in the effluent from the methanogenic reactor. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
Freeze–thaw treatment of low‐concentrated (<C*) aqueous solutions of poly(vinyl alcohol) (PVA) results in the formation of a cryoprecipitate fraction. It is shown that the efficiency of such a process (the yield of PVA cryoprecipitation) depends on the initial polymer concentration in the solution to be frozen and the conditions of a cryogenic influence. The key factor is defrostation dynamics: The slower the thawing rate, the higher the cryoprecipitation yield. The iodine‐staining method is employed for the quantitative analysis of PVA concentrations in the solutions under study and the necessity of the use of reduced (0–2°C) temperatures throughout such a PVA quantification is demonstrated. Observation of the kinetics of the freeze–thaw‐induced formation of cryoprecipitate matter reveals the extreme character of the temperature dependence of the efficacy of PVA macromolecule aggregation, the extreme point being situated in the vicinity of −2°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1978–1986, 1999  相似文献   

6.
The microbial transformation of l‐menthol ( 1 ) was investigated by using 12 isolates of soil‐borne plant pathogenic fungi, Rhizoctonia solani (AG‐1‐IA Rs24, Joichi‐2, RRG97‐1; AG‐1‐IB TR22, R147, 110.4; AG‐1‐IC F‐1, F‐4, P‐1; AG‐1‐ID RCP‐1, RCP‐3, and RCP‐7) as a biocatalyst. Rhizoctonia solani F‐1, F‐4 and P‐1 showed 89.7–99.9% yields of converted product from 1 , RCP‐1, RCP‐3, and RCP‐7 26.0–26.9% and the other isolates 0.1–12.0%. In the cases of F‐1, F‐4 and P‐1, substrate 1 was converted to (?)‐(1S,3R,4S,6S)‐6‐hydroxymenthol ( 2 ), (?)‐(1S,3R,4S)‐1‐hydroxymenthol ( 3 ) and (+)‐(1S,3R,4R,6S)‐6,8‐dihydroxymenthol ( 4 ), which was a new compound. Substrate 1 was converted to 2 and/or 3 by RRG97‐1, 110.4, RCP‐1, RCP‐3 and RCP‐7. The structures of the metabolic products were elucidated on the basis of their spectral data. In addition, metabolic pathways of the biotransformation of 1 by Rhizoctonia solani are discussed. Finally, from the main component analysis and the differences in the yields of converted product from 1 , the 12 isolates of Rhizoctonia solani were divided into three groups based on an analysis of the metabolites. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
8.
The “Joint Committee for the Analysis of Fats, Oils, Fatty Products, Related Products and Raw Materials (GA Fett)” has developed the following method for the determination of isomeric diacylglycerols in virgin olive oils to detect the freshness of oils. It is intended to include this method in Section C, Chapter VI of the German Standard Methods.*  相似文献   

9.
The phase equilibrium in the binary systems based on hydroxyl‐terminated butadienes and diglycidyl ether of bisphenol A has been studied in wide ranges of temperature and compositions of the solution. The analysis of the obtained experimental and calculated data shows that the molecular weight, content of hydroxyl groups, functionality of the oligomer, and the presence of bromine in the oligomer affect the level of the thermodynamic compatibility. An increase in the content of hydroxyl groups and bromine results in an increase in the compatibility of the components. The results obtained are interpreted in terms of the Flory–Huggins theory. The correlation between the phase boundary concentrations and an upper critical solution temperature and solubility parameters of the oligobutadienes has been established. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 953–957, 1999  相似文献   

10.
11.
Poly(vinylidene fluoride) (PVDF) nanofibers were fabricated via electrospinning with an investigation of various ratios of binary solvents at different temperatures. The amount of acetone influenced the morphology. Scanning electron microscopy showed a PVDF membrane composed of smooth and unblemished fibers without beads and dark spots with small diameters of 201 ± 54 nm at a dimethylformamide‐to‐acetone ratio of 4:6. The temperature of pre‐thermal treatment from room temperature to 120 °C was investigated to promote the β crystalline phase in electrospun PVDF nanofibers. The result was characterized using Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). PVDF solution prepared at 80 °C was used to increase the β crystalline phase of the electrospun PVDF nanofibers due to the transformation of α to β phase occurring during the spinning process and also bead‐free PVDF nanofibers were obtained. Differential scanning calorimetry revealed crystallization behavior corresponding with that determined using FTIR spectroscopy and XRD. Therefore, the solvent proportion and pretreatment temperature were observed to affect ultrafine nanofiber and crystalline structure of PVDF, respectively. © 2020 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号