首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epoxy group‐containing poly(hydroxyethyl methacrylate/glycidyl methacrylate), p(HEMA/GMA), membrane was prepared by UV initiated photopolymerization. The membrane was grafted with chitosan (CH) and some of them were chelated with Fe(III) ions. The CH grafted, p(HEMA/GMA), and Fe(III) ions incorporated p(HEMA/GMA)‐CH‐Fe(III) membranes were used for glucose oxidase (GOD) immobilization via adsorption. The maximum enzyme immobilization capacity of the p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes were 0.89 and 1.36 mg/mL, respectively. The optimal pH value for the immobilized GOD preparations is found to have shifted 0.5 units to more acidic pH 5.0. Optimum temperature for both immobilized preparations was 10°C higher than that of the free enzyme and was significantly broader at higher temperatures. The apparent Km values were found to be 6.9 and 5.8 mM for the adsorbed GOD on p(HEMA/GMA)‐CH and p(HEMA/GMA)‐CH‐Fe(III) membranes, respectively. In addition, all the membranes surfaces were characterized by contact angle measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3084–3093, 2007  相似文献   

2.
We investigated a new adsorbent system, Reactive Red 120 attached poly(2‐hydroxyethyl methacrylate ethylene dimethacrylate) [poly(HEMA–EDMA)] beads, for the removal of Ni2+ ions from aqueous solutions. Poly(HEMA–EDMA) beads were prepared by the modified suspension copolymerization of 2‐hydroxyethyl methacrylate and ethylene dimethacrylate. Reactive Red 120 molecules were covalently attached to the beads. The beads (150–250 μm), having a swelling ratio of 55% and carrying 25.5 μmol of Reactive Red 120/g of polymer, were used in the removal of Ni2+ ions. The adsorption rate and capacity of the Reactive Red 120 attached poly(HEMA–EDMA) beads for Ni2+ ions was investigated in aqueous media containing different amounts of Ni2+ ions (5–35 mg/L) and having different pH values (2.0–7.0). Very high adsorption rates were observed at the beginning, and adsorption equilibria were then gradually achieved in about 60 min. The maximum adsorption of Ni2+ ions onto the Reactive Red 120 attached poly(HEMA–EDMA) beads was 2.83 mg/g at pH 6.0. The nonspecific adsorption of Ni2+ ions onto poly(HEMA–EDMA) beads was negligible (0.1 mg/g). The desorption of Ni2+ ions was studied with 0.1M HNO3. High desorption ratios (>90%) were achieved. The intraparticle diffusion rate constants at various temperatures were calculated as k20°C = 0.565 mg/g min0.5, k30°C = 0.560 mg/g min0.5, and k40°C = 0.385 mg/g min0.5. Adsorption–desorption cycles showed the feasibility of repeated use of this novel adsorbent system. The equilibrium data fitted very well both Langmuir and Freundlich adsorption models. The pseudo‐first‐order kinetic model was used to describe the kinetic data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:5056–5065, 2006  相似文献   

3.
Poly(GMA/MMA) beads were synthesized from glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of a cross‐linker (i.e. ethyleneglycol dimethacrylate) (EGDMA) via suspension polymerization. The epoxy groups of the poly(GMA/MMA) beads were converted into amino groups with either ammonia or 1,6‐diaminohexane (i.e. spacer‐arm). An L ‐histidine ligand was then covalently immobilized on the aminated (poly(GMA/MMA)‐AH) and/or the spacer‐arm attached (poly(GMA/MMA)‐SAH) beads using glutaric dialdehyde as a coupling agent. Both affinity adsorbents were used in human serum albumin (HSA) adsorption/desorption studies under defined pH, ionic strength or temperature conditions in a batch reactor. The spacer‐arm attached affinity adsorbent resulted in an increase in the adsorption capacity to HSA when compared to the aminated counterpart (i.e. poly(GMA/MMA)‐AH). The maximum adsorption capacities of the affinity adsorbents were found to be significantly high, i.e. 43.7 and 80.2 mg g?1 (of the beads), while the affinity constants, evaluated by the Langmuir model, were 3.96 × 10?7 and 9.53 × 10?7 mol L?1 for poly(GMA/MMA)‐AH and poly(GMA/MMA)‐SAH, respectively. The adsorption capacities of the affinity adsorbents were decreased for HSA by increasing the ionic strength, adjusted with NaCl. The adsorption kinetics of HSA were analysed by using pseudo‐first and pseudo‐second‐order equations. The second‐order equation fitted well with the experimental data. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
The epoxy‐group‐containing microspheres from cross‐linked glycidyl methacrylate and methyl methacrylate, poly(GMA–MMA), were prepared by suspension polymerisation. The epoxy groups of the poly(GMA–MMA) microspheres were used for grafting with an anionic polymer polyethylenimine (PEI) to prepare non‐specific affinity adsorbents (poly(GMA–MMA)–PEI) for bilirubin removal. The specificity of the poly(GMA–MMA)–PEI adsorbent to bilirubin was further increased by immobilization of human serum albumin (HSA) via adsorption onto PEI‐grafted poly(GMA–MMA) adsorbent. Various amounts of HSA were immobilized on the poly(GMA–MMA)–PEI adsorbent by changing the medium pH and initial HSA concentration. The maximum HSA content was obtained at 68.3 mg g?1 microspheres. The effects of pH, ionic strength, temperature and initial bilirubin concentration on the adsorption capacity of both adsorbents were investigated in a batch system. Separation of bilirubin from human serum was also investigated in a continuous‐flow system. The bilirubin adsorption on the poly(GMA–MMA)–PEI and poly(GMA–MMA)–PEI–HSA was not well described by the Langmuir model, but obeyed the Freundlich isotherm model. The poly(GMA–MMA)–PEI affinity microspheres are stable when subjected to sanitization with sodium hydroxide after repeated adsorption–desorption cycles. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
A novel fibrous adsorbent that grafts glycidyl methacrylate (GMA) and methacrylic acid (MAA) monomer mixture onto poly(ethylene terephthalate) (PET) fibers was used for removal of methylene blue (MB) in aqueous solutions by a batch equilibration technique. The operation parameters investigated included, pH of solution, removal time, graft yield, dye concentration, and reaction temperature. The adsorption rate of MB is much higher on the MAA/GMA‐grafted PET fibers than on the ungrafted PET fibers. MB was removed 99% the initial dye concentration at 10 mg L−1 and 93% at 200 mg L−1 by monomers mixture‐grafted PET fibers. Pseudofirst order and pseudosecond order kinetic equations were used to examine the experimental data of different graft yield. It was found that the pseudosecond order kinetic equation described the data of dye adsorption on fibrous adsorbent very well. The experimental isotherms data were analyzed using Langmuir and Freundlich isotherm models. The data was that Freundlich isotherm model fits the data very well for the dyes on the fibers adsorbent. The dye adsorbed was easily desorbed by treating with acetic acid/methanol mixture (50% V/V) at room temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
This work presents data on human immunoglobulin G (HIgG) adsorption onto L ‐arginine ligand attached poly(GMA/MMA/EGDMA)‐based affinity beads which were synthesized from methyl methacrylate (MMA) and glycidiyl methacrylate (GMA) in the presence of a crosslinker (i.e., ethylene glycol dimethacrylate; EGDMA) by suspension polymerization. The epoxy groups of the poly(GMA/MMA/EGDMA) beads were converted into amino groups after reaction with ammonia or 1,6‐diaminohexane (i.e., spacer‐arm). With L ‐arginine as a ligand, it was covalently immobilized on the aminated (poly(GMA/MMA/EGDMA)‐ AA) and/or the spacer‐arm attached (poly(GMA/MMA/EGDMA)‐SA) beads, using glutaric dialdehyde as a coupling agent. Both affinity poly(GMA/MMA/EGDMA)‐based beads were used in HIgG adsorption/desorption studies under defined pH, ionic strength, or temperature conditions in a batch reactor, using acid‐treated poly(GMA/MMA/EGDMA) beads as a control system. The poly(GMA/MMA/EGDMA)‐SA affinity beads resulted in an increase in the adsorption capacity to HIgG compared with the aminated counterpart (i.e., poly(GMA/MMA/EGDMA)‐AA). The maximum adsorption capacities of the poly(GMA/MMA/EGDMA)‐AA and poly(GMA/MMA/EGDMA)‐SA affinity beads were found to be 112.36 and 142 mg g?1, and the affinity constants (Kd), evaluated by the Langmuir model, were 2.48 × 10?7 and 6.98 × 10?7M, respectively. Adsorption capacities of the poly(GMA/MMA/EGDMA)‐AA and poly(GMA/MMA/EGDMA)‐SA were decreased with HIgG by increasing the ionic strength adjusted with NaCl. Adsorption kinetic of HIgG onto both affinity adsorbents was analyzed with first‐ and second‐order kinetic equations. The first‐order equation fitted well with the experimental data. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 672–679, 2007  相似文献   

7.
Poly(glycidylmethacrylate), p(GMA), brush grafted poly(vinylbenzyl chloride/ethyleneglycol dimethacrylate), p(VBC/EGDMA), beads were prepared by suspension polymerization and the beads were grafted with poly(glycidyl methacrylate), p(GMA), via surface‐initiated atom transfer radical polymerization aiming to construct a material surface with fibrous polymer. The epoxy groups of the fibrous polymer were reacted with hydrazine (HDZ) to create affinity binding site on the support for adsorption of protein. The influence of pH, and initial invertase concentration on the immobilization capacity of the p(VBC/EGDMA‐g‐GMA)‐HDZ beads has been investigated. Maximum invertase immobilization onto hydrazine functionalized beads was found to be 86.7 mg/g at pH 4.0. The experimental equilibrium data obtained invertase adsorption onto p(VBC/EGDMA‐g‐GMA)‐HDZ affinity beads fitted well to the Langmuir isotherm model. It was shown that the relative activity of immobilized invertase was higher than that of the free enzyme over broader pH and temperature ranges. The Km and Vmax values of the immobilized invertase were larger than those of the free enzyme. After inactivation of enzyme, p(VBC/EGDMA‐g‐GMA)‐HDZ beads can be easily regenerated and reloaded with the enzyme for repeated use. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

9.
Regenerated cellulose wood pulp was grafted with the vinyl monomer glycidyl methacrylate (GMA) using ceric ammonium nitrate as initiator and was further fuctionalised with imidazole to produce a novel adsorbent material, cellulose‐g‐GMA‐imidazole. All cellulose, grafted cellulose and functionalized cellulose grafts were physically and chemically characterized using a number of analytical techniques, including elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The cellulose‐g‐GMA material was found to contain 1.75 mmol g?1 epoxy groups. These epoxy groups permitted introduction of metal binding functionality to produce the cellulose‐g‐GMA‐imidazole final product. Following characterization, a series of adsorption studies were carried out on the cellulose‐g‐GMA‐imidazole to assess its capacity in the removal of Cu2+ ions from solution. Cellulose‐g‐GMA‐imidazole sorbent showed an uptake of ~70 mg g?1 of copper from aqueous solution. The adsorption process is best described by the Langmuir model of adsorption, and the thermodynamics of the process suggest that the binding process is mildly exothermic. The kinetics of the adsorption process indicated that copper uptake occurred within 30 min and that pseudo‐second‐order kinetics best describe the overall process. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 2006  相似文献   

10.
To obtain silk weight gain and to improve silk properties, Bombyx mori silks were grafted with either 2‐hydroxyethyl methacrylate (HEMA) or methyl methacrylate (MMA). The moisture regain of the HEMA‐grafted and MMA‐grafted silks depended on the hydrophilicity of the used monomers. The acid and alkaline resistances of the HEMA‐grafted and MMA‐grafted silks were clearly improved. Both commercial synthetic dyes, that is, acid and reactive dyes, and a natural dye extracted from turmeric, with potassium aluminum sulfate as a mordant, were used in this study. The results suggested that the dye uptake increased in the presence of poly(2‐hydroxyethyl methacrylate) or poly(methyl methacrylate) in the silk fibroin structures when acid and curcumin dyes were used. The washfastness level of the HEMA‐grafted silk dyed by acid and reactive dyes was similar to that of the degummed silk. However, the colorfastness to washing of the MMA‐grafted silk dyed by an acid dye was improved when the polymer add‐on concentration was 65%. In addition, the washfastness for both grafted silks was improved when they were dyed with natural curcumin dyestuff. The acid and alkaline perspiration fastness properties remained unchanged for the HEMA‐grafted and MMA‐grafted silks when acid, reactive, and curcumin dyes were applied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The aim of this study was to investigate in detail the performance for removal of heavy metal ions of beads composed of poly(2‐hydroxyethyl methacrylate) (pHEMA) to which N‐methacryloylhistidine (MAH) was copolymerized. The metal‐complexing ligand MAH was synthesized by using methacryloyl chloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and HEMA conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA‐MAH) beads had a specific surface area of 17.6 m2/g. The synthesized MAH monomer was characterized by NMR; p(HEMA‐MAH) beads were characterized by swelling studies, FTIR and elemental analysis. The p(HEMA‐MAH) beads with a swelling ratio of 65%, and containing 1.6 mmol MAH/g, were used in the adsorption/desorption experiments. Adsorption capacity of the beads for the selected metal ions, i. e., Cu(II), Cd(II), Cr(III), Hg(II) and Pb(II), were investigated in aqueous media containing different amounts of these ions (10–750 mg/L) and at different pH values (3.0–7.0). Adsorption equilibria were established in about 20 min. The maximum adsorption capacities of the p(HEMA‐MAH) beads were 122.7 mg/g for Cu(II), 468.8 mg/g for Cr(III), 639.4 mg/g for Cd(II), 714.1 mg/g for Pb(II) and 1 234.4 mg/g for Hg(II). pH significantly affected the adsorption capacity of MAH incorporated beads. The chelating beads can be easily regenerated by 0.1 M HNO3 with high effectiveness. These features make p(HEMA‐MAH) beads a potential candidate for heavy metal removal at high capacity.  相似文献   

12.
A series of adsorption studies was carried out on a glycidyl methacrylate‐ modified cellulose material functionalised with imidazole (Cellulose‐g‐GMA‐Imidazole) to assess its capacity in the removal of Ni(II) ions from aqueous solution. The study sought to establish the effect of a number of parameters on the removal of Ni(II) from solution by the Cellulose‐g‐GMA‐Imidazole. In particular, the influence of initial metal concentration, contact time, solution temperature and pH were assessed. The studies indicated a Ni(II) uptake on the Cellulose‐g‐GMA‐Imidazole sorbent of approximately 48 mg g?1 of nickel from aqueous solution. The adsorption process fitted the Langmuir model of adsorption and the binding process was mildly endothermic. The kinetics of the adsorption process indicated that nickel uptake occurred within 400 min and that pseudo‐second order kinetics best describe the overall adsorption process. Nickel(II) adsorption, recovery and re‐adsorption studies indicated that at highly acidic pH values the adsorbent material becomes unstable, but in the range pH 3–6, the adsorbent is stable and shows limited but significant Ni(II) recovery and re‐adsorption capability. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
BACKGROUND: A core‐shell type carboxylic acid modified resin was prepared and dye sorption characteristics of the resin were investigated. The resulting grafted resin material has been shown to be an efficient sorbent for removal of basic dyes from water as a result of the carboxylic acid group's affinity towards basic dye molecules. RESULTS: The resin was characterized using Fourier transform infrared spectroscopy (FT‐IR) and titrimetric methods. The basic dyes (methylene blue and crystal violet) were removed by contacting the swollen resin with aqueous dye solutions at room temperature. The adsorption capacities of resin were determined by colorimetric analysis of the residual dye content in the adsorption medium, which gave capacities for methylene blue and crystal violet of 300 and 250 mg g?1 resin, respectively. The prepared resin is also able to remove basic dyes completely from dilute aqueous dye solutions. Batch kinetic sorption experiments determined that a pseudo‐second‐order rate kinetic model was applicable. CONCLUSION: Flexibility of the polymer side chains is expected to provide pseudo‐homogeneous reaction conditions and easy accessibility of the functional groups involved. The adsorbents are expected to have the advantage of mobility of the grafted chains in the removal of basic dyes from aqueous mixtures. The resin has potential as an adsorbent for removal of basic dyes for use over a wide pH range. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
米根霉磁性生物吸附剂的制备及其对刚果红的吸附   总被引:1,自引:0,他引:1  
以产富马酸米根霉菌体粉末、FeSO4和FeCl3为原料,制备了米根霉磁性生物吸附剂,考察了吸附剂投加量、pH值、刚果红浓度、吸附时间及吸附动力学等对阴离子偶氮染料刚果红的吸附影响. 结果表明,刚果红去除率随吸附剂投加量增加而提高,增大溶液初始浓度能有效提高吸附量,当吸附剂为1.0 g/L, pH=7.0时,吸附效果最佳,刚果红浓度为20 mg/L去除率达98.68%以上. 米根霉磁性吸附剂对刚果红的吸附等温线符合Langmuir模型,吸附过程符合拟二级动力学方程,内扩散为主要控速步骤. 吸附剂有较强磁性,在外加磁场下能快速实现固液分离和回收,可简化刚果红偶氮染料吸附的后续处理.  相似文献   

15.
16.
Lysozyme adsorption onto dye‐attached nonporous monosize poly(2‐hydroxyethyl‐methacrylate‐methylmethacrylate) [poly(HEMA‐MMA)] microspheres was investigated. Poly(HEMA‐MMA) microspheres were prepared by dispersion polymerization. The monochloro‐triazine dye, Cibacron Blue F3GA, was immobilized covalently as dye–ligand. These dye‐affinity microspheres were used in the lysozyme adsorption–desorption studies. The effect of initial concentration of lysozyme and medium pH on the adsorption efficiency of dye‐attached and metal‐chelated microspheres were studied in a batch reactor. Effect of Cu(II) chelation on lysozyme adsorption was also studied. The nonspecific adsorption of lysozyme on the poly(HEMA‐MMA) microspheres was 3.6 mg/g. Cibacron Blue F3GA attachment significantly increased the lysozyme adsorption up to 247.8 mg/g. Lysozyme adsorption capacity of the Cu(II) incorporated microspheres (318.9 mg/g) was greater than that of the Cibacron Blue F3GA‐attached microspheres. Significant amount of the adsorbed lysozyme (up to 97%) was desorbed in 1 h in the desorption medium containing 1.0M NaSCN at pH 8.0 and 25 mM EDTA at pH 4.9. In order to examine the effects of separation conditions on possible conformational changes of lysozyme structure, fluorescence spectrophotometry was employed. We conclude that dye‐ and metal‐chelate affinity chromatography with poly(HEMA‐MMA) microspheres can be applied for lysozyme separation without causing any significant changes and denaturation. Repeated adsorption/desorption processes showed that these novel dye‐attached monosize microspheres are suitable for lysozyme adsorption. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 115–124, 2000  相似文献   

17.
Magnetic starch microspheres(AAM-MSM) were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS) as a crude material, acrylic acid(AA) and acrylamide(AM) as graft copolymer monomers, and methyl methacrylate(MMA) as the dispersing agent and used as an adsorbent for the removal of Cd(II) ions from aqueous solution. Fourier-transform infrared spectroscopy(FT-IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), and vibrating sample magnetometry(VSM) were used to characterize the AAM-MSM adsorbent. The results indicated that AA, AM, and MMA were grafted to the MS, and the Fe_3 O_4 nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface, uniform size, and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(II) ions. The maximum adsorption capacity of Cd(II) on the AAM-MSM was 39.98 mg·g~(-1). The adsorbents were superparamagnetic, and the saturation magnetization was 16.7 A·m~2·kg~(-1). Additionally, the adsorption isotherms and kinetics of the adsorption process were further investigated. The process of Cd(II) ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models, which suggested that the chemical reaction process dominated the adsorption process for the Cd(II) and chemisorption was the rate-controlling step during the Cd(II) removal process.  相似文献   

18.
Biopolymer-based magnetic beads, composed of kappa-carrageenan (κ-Car) and Fe3O4 nanoparticles, were synthesized. The magnetic beads were prepared through in situ precipitation of Fe2+/Fe3+ ions in the presence of carrageenan and subsequently treating with K+ solution. The structure of magnetic kappa-carrageenan beads (mκ-Carb) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer, and thermal gravimetric analysis techniques. According to SEM micrographs, an undulant and coarse structure with cubic-shaped sections was obtained when the magnetic nanoparticles were incorporated in composition of beads. The TEM image confirmed the formation of magnetic nanoparticles with an average size of 3–7 nm. The synthesized beads were examined as adsorbent to remove crystal violet dye from aqueous solutions. It was found that due to coarse surface, the rate of dye adsorption on magnetic beads can be improved slightly. The experimental adsorption kinetics was analyzed according to pseudo-first-order and pseudo-second-order kinetic models and the adsorption kinetics followed well the pseudo-second-order model. Isotherm adsorption data of dye on beads were modeled according to Langmuir and Freundlich isotherm models. The results revealed that the experimental data have the best fit to Langmuir isotherm model, and maximum adsorption capacity of beads for dye obtained was 84.7 mg/g. The influence of pH on the variation of adsorption capacity of beads for crystal violet was not considerable. The thermodynamic parameters indicated that the adsorption of CV dye on beads is spontaneous.  相似文献   

19.
Magnetic beads were prepared from glycidyl methacrylate (GMA), and ethyleneglycol dimethylmethacrylate (EGDMA) in the presence of Fe3O4 nano‐powder via suspension polymerization. The magnetic beads were characterized by surface area measurement, electron spin resonance (ESR), and scanning electron microscopy (SEM). ESR data revealed that the beads were highly super‐paramagnetic. The effects of contact time, pH, ionic strength, and temperature on the adsorption process have been studied. Adsorption equilibrium was established in about 120 min. The maximum adsorption of trypsin on the magnetic beads was obtained as 84.96 mg g?1 at around pH 7.0. At increased ionic strength, the contribution of the electrostatic component to the overall binding decreased, and so the adsorption capacity. The experimental equilibrium data obtained trypsin adsorption onto magnetic beads fitted well to the Langmuir isotherm model. The result of kinetic analyzed for trypsin adsorption onto magnetic ion‐exchange beads showed that the second order rate equation was favorable. It was observed that after six adsorption–elution cycle, magnetic beads can be used without significant loss in trypsin adsorption capacity. Finally, the magnetic beads were used for separation of bovine serum albumin (BSA) and trypsin from binary solution in a batch system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
BACKGROUND: The main aim of this study is to determine the sorptive potential of a novel anion exchanger, Fe(III)‐coordinated amino‐functionalized poly(glycidylmethacrylate)‐grafted TiO2‐densified cellulose (AM‐Fe‐PGDC) for arsenic(V) removal from aqueous solutions by batch technique. RESULTS: The adsorbent was characterized using infrared spectroscopy, powder X‐ray diffraction, scanning electron microscopy, thermogravimetry and potentiometric titrations. The effective pH for removal was 6.0. The adsorption rate was influenced by initial metal ion concentration and contact time. The equilibrium was achieved within 1.5 h and follows a pseudo‐second‐order kinetic model. The adsorption capacity for As(V) calculated using the Langmuir isotherm equation was 105.47 mg g?1. The AM‐Fe‐PGDC developed was used to remove As(V) from simulated groundwater. Regeneration experiments were attempted for four cycles using 0.1 mol L?1 NaCl solution. CONCLUSION: It was found that AM‐Fe‐PGDC is very efficient for the removal of As(V) from aqueous solutions. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号