首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
A novel high‐performance material with enhanced electrical properties was obtained by tuning the phase morphology of poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI)/multiwalled carbon nanotube (MWCNT) composites. MWCNTs were selectively located in the TPI phase due to discrepant affinity of MWCNTs between PEEK and TPI. The dependence of the electrical properties of the PEEK/TPI/MWCNT composites on the phase morphology was investigated by changing the PEEK/TPI ratio, and the maximum conductivity was achieved with a PEEK/TPI ratio of 50/50, which could be explained by the selective location of MWCNTs and the co‐continuous phase morphology of the composites. © 2015 Society of Chemical Industry  相似文献   

2.
    
Carbon nanotubes (CNTs) filled perfluoroalkoxy (PFA) films with the thicknesses of about 10 μm have been prepared via blade coating. Both of the CNTs and PFA are aqueous dispersion, which are favorable for the uniform dispersion of fillers into the matrix. The morphology, direct current (DC) resistivity, electrothermal property, and thermal diffusivity of the composite films were studied. We find out that the fraction of CNTs played a vital role in the heating property and thermal transferring capacity of the composite films. Under the input voltage of 110 V, the temperature of PFA composite film with 15 wt % CNT reached to 200 °C, and the thermal diffusivity was about 3.3 mm2/s. We believe these CNTs/PFA films are promising alternatives to work as flexible electric heating devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44782.  相似文献   

3.
    
Polymeric materials are widely used as insulation and jacketing materials in wire and cable. When such materials are used for long‐term applications, they undergo thermal oxidation aging in the environment. It is necessary to develop an in situ and nondestructive condition monitoring (CM) method to follow the aging of cable materials. The main objective of this work was to investigate low‐density polyethylene/carbon black (LDPE/CB) conductive polymer composites as potential sensor materials for this purpose. LDPE/CB composites with a carbon black loading below the percolation threshold underwent accelerated thermal oxidation aging experiments. The results indicated that the substantial resistivity decreases of the LDPE/CB composites could be directly related to the increases in volume fraction of the conductive carbon black, which was mainly caused by the mass loss of polymer matrix and sample shrinkage during the thermal oxidation aging process. Compared to existing CM method based on density change, the electrical resistivity is more explicit regarding its absolute changes throughout the thermal oxidation aging. The change in resistivity spanned over four orders of magnitude, whereas the composite density only increased 10%. The results offer strong evidence that resistivity measurements, which reflect property changes under thermal aging conditions, could represent a very useful and nondestructive CM approach as well as a more sensitive method than density CM approach. Crystallinity changes in materials investigated by modulated DSC and TGA measurements indicated deterioration of crystalline regions in polymer during the thermal oxidation aging. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 513–520, 2004  相似文献   

4.
以纳米纤维素晶体(CNCs)为分散剂,通过对CNCs长径比和表面羧基含量的调变,探究CNCs的加入及其上述规格对碳纳米管(CNTs)在水相中的分散性及其复合纳米膜(CNMs)性能的影响机制,以解决当前由于CNTs容易缠绕团聚而导致其难以发挥其优异性能的关键问题。研究发现,CNCs的加入及其长径比的减小和羧基含量的增高对CNTs分散性以及CNMs的力学和电学性能具有明显的持续改善作用。其中,CNTs的分散性、CNMs的拉伸和传感性能受CNCs长径比影响更大,CNMs的拉伸强度、韧性和电阻变化率最高分别为73.2 MPa,2.5 J/m3和33.3%。另一方面,CNMs的导电性能受CNCs长径比和羧基含量共同影响,但羧基含量的影响更为直接,在CNCs长径比小于50,羧基含量高于0.65 mmol/g时,CNMs电导率均超过20 S/cm。  相似文献   

5.
    
To improve the crystallization and mechanical properties of poly(ethylene terephthalate) (PET), in this work, PET/SiO2‐MgO‐CaO whiskers composites were prepared via in situ polymerization. The morphology, crystallization, and mechanical properties of the prepared composites were investigated. It was found that inorganic whiskers could be easily dispersed in PET matrix, as demonstrated by SEM and PLM. DSC and PLM observation indicated a strong nucleation capability of inorganic whiskers for PET. Mechanical analysis results showed that the glass transition temperature, tensile strength, and modulus of the composites were greatly improved. A possible chemical bonding between PET chains and the surface of whiskers was observed by FTIR, TGA, and sedimentation experiment. It could be the main reason for the good dispersion and improved properties of the prepared composites. This work is important for the application of PET due to the low cost but high reinforcing efficiency of this inorganic whisker. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
炭黑填充复合型导电聚合物的压阻特性   总被引:1,自引:0,他引:1  
总结了炭黑填充复合型导电聚合物的压阻特性与炭黑导电网络、压力和时间等条件的关系,阐述了加工工艺参数、导电填料、基体性质等对导电聚合物压阻特性的影响,并介绍了通过加入SiO2纳米材料或适当交联基体等改善压阻特性重复性和稳定性的方法.  相似文献   

7.
In this study, it was aimed to improve electrical conductivity and mechanical properties of conductive polymer composites, composed of polypropylene (PP), poly(ethylene terephthalate) (PET), and carbon nanotubes (CNT). Grinding, a type of solid state processing technique, was applied to PP/PET and PP/PET/CNT systems to reduce average domain size of blend phases and to improve interfacial adhesion between these phases. Surface energy measurements showed that carbon nanotubes might be selectively localized at PET phase of immiscible blend systems. Grinding technique exhibited improvement in electrical conductivity and mechanical properties of PP/PET/CNT systems at low PET compositions. Ground composites molded below the melting temperature of PET exhibited higher tensile strength and modulus values than those prepared above the melting temperature of PET. According to SEM micrographs, micron‐sized domain structures were obtained with ground composite systems in which PET was the minor phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
    
The percolation thresholds of carbon black–polymer composites have been successfully lowered using particulate polymer starting materials (i.e., latex and water‐dispersible powder). Composites prepared using carbon black (CB) and commercial poly(vinyl acetate) (PVAc) latex exhibit a percolation threshold near 2.5 vol % CB. This threshold value is significantly lower than that of a comparable reference composite made from poly(N‐vinylpyrrolidone) (PNVP) solution and the same CB, which exhibits a sharp rise in electrical conductivity near 15 vol % CB. This dramatic difference in critical CB concentration results from the segregated microstructure induced by the latex during composite film formation. Carbon black particles are forced into conductive pathways at low concentration because of their inability to occupy volume already claimed by the much larger latex particles. There appears to be good qualitative agreement between experimental findings and current models dealing with conductive behavior of composites with segregated microstructures. Lack of quantitative agreement with the models is attributed to the polydispersity of the polymer particles in the latex. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 692–705, 2001  相似文献   

9.
炭黑填充复合型导电聚合物的研究进展   总被引:9,自引:3,他引:9  
李莹  王仕峰  张勇  张隐西 《塑料》2005,34(2):7-11
在聚合物基体中添加导电炭黑以降低聚合物的电阻率,是目前最为常用的制备导电聚合物的方法。综述了炭黑填充复合型导电聚合物的研究进展。对影响复合材料导电性能及渗滤阈值的因素进行了讨论。重点介绍了使用共混聚合物作基体,并利用炭黑在共混基体中的非均相分布来降低炭黑用量的研究。  相似文献   

10.
    
To improve the conductive properties of carbon‐black‐filled low‐density polyethylene, in situ grafting of certain monomers was applied during the melt compounding process. The experimental data obtained demonstrated that chemical bonding could thus be established between the fillers and the matrix polymer. The degree of enhancement of the filler/matrix interfacial interactions in the composites prepared in this way depends on the species of the grafting monomers being employed. When compared with the untreated carbon black composites, the composites manufactured through in situ melt grafting exhibited reduced room temperature resistivities and greatly increased positive temperature coefficient intensities, as well as favorable performance reproducibility. This proposed technical route has several advantages, including simplicity, low cost and easy control. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
    
An anisotropically conductive polymer composite (ACPC) based on conductive carbon black (CB) and binary polymer blend of polyethylene (PE) and polyethylene terephthalate (PET) was successfully fabricated under shear and elongational flow fields. The PET phase formed in situ the aligned conductive microfibrils whose surfaces were coated by CB particles. This ACPC material exhibited a strong electrical anisotropy within a broad temperature range. When the ACPC samples were subjected to isothermal treatment (IT), they showed anomalous variations of the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects. The PTC intensity was attenuated gradually with the increase of the IT time, and the NTC intensity was nearly eliminated after IT of 8 or 16 h. Beyond 16 h, the resistivity in the NTC region rose anomalously with the temperature after the elimination of NTC effect, which was the result of much transformation from the potential pathways to the intrinsic pathways due to the disordering of oriented conductive microfibrils. When the amount of potential pathways was very small, the effect of the intrinsic pathway separation surmounts that of the potential pathways, leading to the anomalous resistivity increase in the NTC region. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
    
Polyblends prove to be able to provide more possibilities for tailoring conductive polymer composites in comparison with individual polymer systems. Accordingly, ethylene–vinyl acetate—low-density polyethylene (EVA–LDPE) filled with carbon black (CB) was prepared in this study as a candidate for positive temperature coefficient (PTC) material. In consideration of the fact that CB distribution plays the leading role in controlling a composite's conduction behavior, chemical treatment of CB was applied to reveal its influence on percolation and the PTC effect. It was found that titanate coupling agent treatment facilitated sufficient distribution of CB in LDPE phase, leading to lower resistivity and a squarer PTC curve. Composites filled with nitric-acid-treated CB exhibited specific temperature dependence of resistivity as a result of the heterogeneous dispersion of CB at the interface of EVA–LDPE, which might provide the materials with a new function. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 489–494, 1999  相似文献   

13.
    
The electrical resistivity and morphology of high impact polystyrene (HIPS)/styrene‐butadiene‐styrene triblock copolymer (SBS)/carbon black (CB) blends were studied. Their antistatic sheets were prepared by both compression‐molding and extrusion calendaring process, with their surface morphology observed using scanning electron microscopy (SEM). The SEM images reveal better dispersion of CB achieved in extrusion‐calendering, resulting in low percolation threshold values in HIPS composites. Higher compression ratio and higher drawing speed (corresponding lower sheet thickness) are beneficial to get better CB dispersion, leading to decreased conductivity for the antistatic sheets. SEM images indicate that strong shear forces in extrusion tend to break the conductive network of CB, resulting in increased surface resistivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
    
In this study, five different flexibilizers were added into a matrix resin to improve the flexibility of electrically conductive adhesives (ECAs). The flexible ECAs were fabricated from the matrix resin and electrically conductive fillers. Their curing was fixed at 150 °C for 30 min. Of the five flexibilizers, 1,3‐propanediol bis(4‐aminobenzoate) (PBA) had the best effect on the electrical, mechanical and thermal properties of the ECAs. During curing, PBA reacted with the functional epoxy in the matrix resin. The soft ether segments in PBA were grafted into the crosslinked epoxy network to form an orderly spaced mesh structure. This led to high‐temperature stability, with the pyrolysis temperature being above 350 °C. Flexible ECAs with a 10% weight ratio of PBA in the matrix resin had the best properties. Their viscosity and bulk resistivity were the lowest. Their flexibility and electrical conductivity were the highest. They also had low storage modulus which could effectively dissipate or reduce the residual shear stress generated by the mismatch of thermal expansion coefficient between chip and substrate. Their impact strength was the lowest, and the toughening effect was so significant that the improvement was about 48% compared to ECAs. © 2013 Society of Chemical Industry  相似文献   

15.
Nanocomposites using copper nanowires (CuNWs) or carbon nanotubes (CNTs) as fillers with polypropylene (PP) as matrix were prepared by miscible solution mixing and precipitation method. Comparative studies on electrical conductivity and electromagnetic interference shielding properties were reported. On the conductivity curve, a plateau was found for both CuNW/PP composite and CNT/PP composite. The plateaus are located at a different concentration range for each composite type: for CuNW/PP composite, it is between 0.8 and 1.7 vol %, while for CNT/PP composite the plateau occurs in a narrower range between 0.4 and 0.6 vol %. The shielding effectiveness (SE) increases with increased concentration of fillers. CNT/PP composite has higher SE at concentrations less than 2 vol %; the two curves cross near 10 dB at this point and at concentrations higher than 2 vol %, CuNW/PP composite has higher SE. © 2014 American Institute of Chemical Engineers AIChE J, 61: 296–303, 2015  相似文献   

16.
    
This work attempts to develop a carbon black (CB) filled conductive polymer composite based on poly(ethylene terephthalate) (PET) and polypropylene (PP). The process follows by localizing the CB particles in the minor phase (PET), and then the conductive masterbatch was elongated to form conductive microfibrils in PP matrix during melt extrusion process. After compression molding, a fine conductive three‐dimensional microfibrillar network is constructed. For comparison purpose, CB, PET, and PP are mixed using different pattern. The morphology and the volume resistivity of the obtained composites are evaluated. Electrical conductivity investigation shows that the percolation threshold and resistivity values are dependent on the CB concentration. The best morphological observation shows that the PET phases forms well‐defined microfibrils, and CB particles overwhelmingly localize in the surfaces of the PET microfibrils, which led to a very low percolation threshold, i.e., 4.5 phr, and a reasonable conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
    
The electrical resistivity of polymer filled with conductive filler, such as carbon black (CB) particles, is greatly decreased by incorporating the conductive filler. This is called the percolation phenomenon and the critical CB concentration is called the percolation threshold concentration (Φ*). For CB particle–filled insulating polymer composite at lower than Φ*, the conductive CB network is constructed in the polymer matrix when the composite is maintained at a temperature higher than the glass‐transition temperature or the melting temperature of the polymer matrix. This phenomenon is called dynamic percolation and the time to reach the substantial decrease in resistivity is called percolation time (tp). To investigate the relationship between the dynamic percolation process and the surface state of CB particles, we used three kinds of carbon black particles such as original carbon black (CB0) and fluorinated carbon black (FCB010 and FCB025)–filled poly(methyl methacrylate) (PMMA). It was observed that the dynamic percolation curves for CB0‐filled PMMA and FCB‐filled PMMA composites shifted to a shorter percolation time with increases in both the annealing temperature and the filler concentration. However, the dynamic percolation curves of FCB‐filled PMMA showed a gradually decreasing trend compared to that of CB0‐filled PMMA composites. The activation energy calculated from an Arrhenius plot of the tp against the inverse of the annealing temperature was decreased by surface fluorine treatment. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1151–1155, 2003  相似文献   

18.
    
Room temperature resistance relaxation was studied with respect to carbon black (CB) volume fraction, the type of polymer matrix, and the environment. It was found that resistance of CB filled poly(methylvinylsiloxane) and polypropylene (PP) conductive composites changed at room temperature with different directions and amplitudes, depending on the filler volume fraction and the environment. The room temperature resistance relaxation was ascribed to the local Joule heat at the tunneling junction or the swelling effect of the solvents. On the other hand, CB filled immiscible PP/Nylon 1212 blends exhibited a stable electrical conduction due to the selective distribution of CB aggregates along the interface between polymer matrices. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
    
Novel polyethylene‐ and polypropylene‐based electromagnetic wave shielding and absorbing composite materials with low combustibility, enhanced thermal and mechanical properties, containing graphite, grinded wood, and fire retardants, were developed and investigated. Flame‐resistance, thermal and mechanical properties of these materials was investigated. Electromagnetic wave reflection coefficients over the frequency range 20–40 GHz were measured; at moderate concentration (10–15%) of functional filler, reflection coefficient can be as low as ?16 dB for PE and ?11 dB for PP composite, respectively. Coke formation mechanism was investigated, the principal role in this process is attributed to aromatization and condensation of aromatic compounds with the formation of polycyclic aromatic systems, an important role of phosphoric acids in accelerating this process was found. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
研究了PS及PS接枝物/CB复合材料的导电性能,讨论了炭黑用量、温度、加工工艺对其导电性能的影响,并研究了其复合导电材料的亚微结构和导电机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号