首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
N ,N ‐Dimethylamino ethyl methacrylate (DMAEMA) is covalently bonded on a commercial polyethylene‐coated polypropylene skin‐core structure fiber (PE/PP) in aqueous and MeOH/H2O solutions by a one‐step green reaction using radiation‐induced graft polymerization. The effects of the absorbed dose and solvent system on grafting yield are investigated, while the chemical and physical properties of the functionalized fiber are also evaluated. The fiber with a Dg of 51.6% exhibited good adsorption capacity of Au(III) ions over a large range of concentrations (from 10 to 2.5 g L?1) in both batch and flow‐through adsorption tests. The highest capacity of Au was 949.3 mg g?1. After elution, the adsorbents can be reused without any further regeneration for at least five adsorption‐desorption cycles. Additionally, the fibers show high selectivity for Au(III). The distribution coefficient of Au(III) is 104 to 105 times higher than that for Cu(II), Fe(III), Ni(II), and Pb(II) even at 100 times lower Au(III) concentration compared to the co‐existing metal ion concentration. This study provides an effective and novel approach for gold recovery from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44955.  相似文献   

2.
《分离科学与技术》2012,47(14):2250-2259
Persimmon tannin was chemically modified to prepare a quaternary amine type of adsorption gel, named as quaternary amine modified persimmon tannin (QAPT) gel. The QAPT gel has been used to investigate the adsorption behaviors for Au(III), Pd(II), and Pt(IV) from HCl media. It was found that the gel exhibited good selectivity towards precious metals over a wide concentration range of HCl. However, it exhibited poor affinity towards base metals such as Cu(II), Fe(III), Ni(II), and Zn(II). The adsorption isotherms of the gel for precious metal ions were described by the Langmuir model. The maximum adsorption capacities for Au(III), Pd(II), and Pt(IV) were evaluated as 4.16, 0.84, and 0.52 mmol g?1, respectively. Although the anion exchange is the main mechanism for the adsorption of anionic species of Au(III), Pt(IV), and Pd(II), adsorption of Au(III) is followed by subsequent reduction, which results in the extraordinary high adsorption capacity for Au(III). Adsorption behavior of QATP gel for Au(III) was also compared to that of the persimmon tannin, the feed material.  相似文献   

3.
Novel chitosan‐based adsorbent materials were synthesized with a higher fatty diacid diglycidyl as a crosslinking agent, and the adsorption ability of the resulting polymers for several metal ions was evaluated. Selective adsorption for Cu2+ in comparison with other divalent metal ions, such as Ni2+, Pb2+, Cd2+, and Ca2+, was observed with the crosslinked chitosan sorbent at pH 6; however, the adsorption power decreased abruptly as the pH value of the solution decreased. The addition of ethylenediamine tetraacetic acid (EDTA) residues to crosslinked chitosan significantly enhanced the adsorption power for metal ions, especially for Ca2+. The adsorptivity of Ca2+ was dramatically improved with the introduction of EDTA residues, and the value was greater than that obtained with a commercial chelate resin (CR11). Although the adsorption power of the EDTA‐derivatized sorbent for other metal ions was just comparable to that of the CR11 material, the newly synthesized adsorbent could be used for the recovery of metal ions from industrial waste solutions with a relatively wide range of pHs, from 4.0 to 6.0. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2758–2764, 2004  相似文献   

4.
合成了壳聚糖包覆纤维素(CHCC)吸附剂,其结构经FTIR、元素分析进行表征。研究了对Au3+的吸附包括pH的影响、吸附动力学、吸附选择性和吸附热力学。结果表明:吸附容量受pH影响较大;液膜扩散是吸附的主控制步骤,pH=3时优先选择吸附Au3+;吸附热力学符合Freundlich模型。-NH2、-OH参与对Au3+的吸附,树脂中的-CHO可能被Au3+氧化。  相似文献   

5.
In this study, a novel selective Au(III) chelating surface ion imprinted fibers based on phenyl thiosemicarbazide modified natural cotton (Au‐C‐PTS) has been synthesized, and applied for selective removal of Au(III) from aqueous solutions. Batch adsorption experiments were performed with various parameters, such as contact time, pH, initial Au(III) concentration, and temperature. The kinetic studies revealed that the adsorption process could be described by pseudo‐second‐order kinetic model, while the adsorption data correlated well with the Langmuir and Freundlich models. The maximum adsorption capacities calculated from the Langmuir equation are 140 ± 1 mg g?1 and 72 ± 1 mg g?1 at pH 5 for both Au‐C‐PTS and NI‐C‐PTS, respectively. The estimated thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy change (ΔS°)) indicated the spontaneity and exothermic nature of the adsorption process. Furthermore, the selectivity study revealed that the ion imprinted fibers was highly selective to Au(III) compared with Cu(II), Cd(II), Hg(II), and Fe(III). The adsorbent was successfully regenerated with a 0.1M HNO3 solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40769.  相似文献   

6.
Adsorption of precious metals in acidic aqueous solutions using thiourea modified magnetic magnetite nanoparticle (MNP-Tu) was examined. The MNP-Tu was synthesized, characterized and examined as a reusable adsorbent for the recovery of precious metals. The adsorption kinetics were well fitted with pseudo second-order equation while the adsorption isotherms were fitted with both Langmuir and Freundlich equations. The maximum adsorption capacity of precious metals for MNP-Tu determined by Langmuir model was 43.34, 118.46 and 111.58 mg/g for Pt(IV), Au(III) and Pd(II), respectively at pH 2 and 25 °C. MNP-Tu has high adsorption selectivity towards precious metals even in the presence of competing ions (Cu(II)) at high concentrations. In addition, the MNP-Tu can be regenerated using an aqueous solution containing 0.7 M thiourea and 2% HCl where precious metals can be recovered in a concentrated form. It was found that the MNP-Tu undergoing seven consecutive adsorption-desorption cycles still retained the original adsorption capacity of precious metals. A reductive adsorption resulting in the formation of elemental gold and palladium at the surface of MNP-Tu was observed.  相似文献   

7.
An adsorbent (PEI-GA) is prepared by crosslinking polyethyleneimine with glutaraldehyde. PEI-GA shows outstanding adsorption performance towards Au(III) and Pd(II). PEI-GA presents large adsorption capacity towards Au(III) in a wide application pH range from 1 to 9. The adsorption capacities of PEI-GA for Au(III) and Pd(II) at 25°C reach 2575 and 497 mg/g, respectively. Au(III) and Pd(II) can be adsorbed completely within 10 min for 8.3 mg/L Au(III) and 20 min for 9.7 mg/L Pd(II). The adsorption equilibrium time required for 523.9 mg/L Au(III) and for 565.6 mg/L Pd(II) is 2 and 9 h, respectively. The Sips model is the most suitable to describe the adsorption isotherms which leads to more realistic adsorption capacities for both metals. PEI-GA also exhibits high selectivity and repeatability towards Au(III) and Pd(II). The adsorption mechanism involves redox, chelation coordination, and electrostatic interactions for Au(III), and coordination and electrostatic interactions for Pd(II).  相似文献   

8.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

9.
Iron(III)‐loaded carboxylated polyacrylamide‐grafted sawdust was investigated as an adsorbent for the removal of phosphate from water and wastewater. The carboxylated polyacrylamide‐grafted sawdust was prepared by graft copolymerization of acrylamide and N,N′‐methylenebisacrylamide onto sawdust in the presence of an initiator, potassium peroxydisulfate. Iron(III) was strongly attached to the carboxylic acid moiety of the adsorbent. The adsorbent material exhibits a very high adsorption potential for phosphate ions. The coordinated unsaturated sites of the iron(III) complex of polymerized sawdust were considered to be the adsorption sites for phosphate ions, the predominating species being H2PO ions. Maximum removal of 97.6 and 90.3% with 2 g L?1 of the adsorbent was observed at pH 2.5 for an initial phosphate concentration of 100 and 250 μmol L?1, respectively. The adsorption process follows second‐order kinetics. Adsorption rate constants as a function of concentration and temperature and kinetic parameters, such as ΔG±, ΔH±, and ΔS±, were calculated to predict the nature of adsorption. The L‐type adsorption isotherm obtained in the sorbent indicated a favorable process and fitted the Langmuir equation model well. The adsorption capacity calculated by the Langmuir adsorption isotherm gave 3.03 × 10?4 mol g?1 of phosphate removal at 30°C and pH 2.5. The isosteric heat of adsorption was also determined at various surface loadings of the adsorbent. The adsorption efficiency toward phosphate removal was tested using industrial wastewater. Different reagents were tested for extracting phosphate ions from the spent adsorbent. About 98.2% of phosphate can be recovered from the adsorbent using 0.1M NaOH. Alkali regeneration was tried for several cycles with a view to recover the adsorbed phosphate and also to restore the adsorbent to its original state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2541–2553, 2002  相似文献   

10.
Silica gel‐based adsorbents were prepared via homogeneous and heterogeneous routes using two silane coupling reagents, 3‐glycidoxypropyltrimethoxysilane and γ ‐chloropropyltrimethoxysilane. Characterization results showed that amino contents of the adsorbents prepared via the homogeneous route were higher than those of the adsorbents prepared via the heterogeneous route for both silane coupling reagents. The adsorption capabilities of the resulting four types of adsorbents for Hg(II), Cu(II), Au(III), Ni(II), Pb(II) and Ag(I) ions were compared. Good adsorption capability for Au(III) was observed for the new adsorbents and the maximum static saturated adsorption capacities for Au(III) could reach 0.67 mmol g?1. Due to the formation of Au(0) particles in the adsorption process, which hampered the reusability of the spent adsorbents, alternative recycling of the spent adsorbents after Au(III) adsorption was sought. The spent adsorbents were treated with NaBH4 and used as catalysts in the reduction of 4‐nitrophenol to 4‐aminophenol. After three catalytic cycles at 298 K, the k values indicated minimal decrease of catalytic activity. © 2017 Society of Chemical Industry  相似文献   

11.
《分离科学与技术》2012,47(16):2609-2624
ABSTRACT

SBA-15 mesoporous materials modified by sulfonic acid and sulfamic acid functionalities, abbreviated as SBA-15/SO3H and SBA-15/NHSO3H, were synthesized and applied for the removal–separation of Eu(III), Th(IV), and U(VI). SBA-15/NHSO3H showed an excellent selectivity toward U(VI), while SBA-15/SO3H was more efficient adsorbent for Eu(III) and Th(IV). It was found that in the presence of KNO3 (1 mol L?1), the separation of Eu(III)/Th(IV) from their mixtures is possible. The results of the sorption behavior indicated a high adsorption capacity toward U(VI) and Th(IV) ions (140.5 and 106.7 mg g?1, respectively) and ultrafast kinetics (15 min) in Eu(III) adsorption.  相似文献   

12.
Two molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10?4 and 6 × 10?5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g?1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles. © 2018 Society of Chemical Industry  相似文献   

13.
Amine‐type adsorbents were prepared by radiation‐induced graft polymerization. The sorption behaviors for an individual metal ion of Cu2+ and Pb2+ separately, as well as with mixed Cu2+/Pb2+, were studied in both column and batch mode. Ethylenediamine‐type adsorbent exhibited a high capacity for Cu2+ and Pb2+ at a high flow rate of 1000 h?1, but low selectivity in the mixed Cu2+/Pb2+ solutions. Radiation‐induced crosslinking of the amine‐type adsorbent was performed in water to improve selectivity. Crosslinking of the material was demonstrated by gel fraction, water content, and scanning electron microscopy image. Compared with the results from the noncrosslinked adsorbents, the breakthrough curve of Cu2+ right shifted, whereas the breakthrough curve of Pb2+ left shifted, indicating the higher adsorption capacity of Cu2+ and the lower adsorption capacity of Pb2+ from the crosslinked adsorbent. After 300 kGy irradiation, the crosslinked adsorbent was found to selectively adsorb Cu2+ from the mixed Cu2+/Pb2+ solution. The results revealed that crosslinking raised the selectivity of the adsorbents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
《分离科学与技术》2012,47(9-10):2363-2374
Abstract

Recovery of Au(III) in aqueous hydrochloric acid medium using lemon peel was studied. The adsorption gel prepared from lemon peel was found to adsorb Au(III) highly selectively showing negligible affinity for other precious metals and some base metal ions studied so far. The adsorption isotherm study gives the maximum loading capacity of the gel as 6.5 mol per kg dry weight of gel. XRD analysis and the digital micrograph of the gel taken after adsorption reveal the formation of gold particles during the adsorption process which is associated with the high selectivity and capacity of the gel for Au(III). Kinetic and electrochemical studies were performed at various temperatures. An endothermic adsorption process following pseudo-first order kinetics was established.  相似文献   

15.
A new chitosan molecular‐imprinted adsorbent was prepared from the mycelium of waste biomass. The results showed that an adsorbent using Penicillium chrysogenum mycelium as the core material was better than one derived from peanut coat. The adsorption capacity of the surface‐imprinted adsorbent for Ni2+ was enhanced by increasing the chitosan concentration in the imprinting process. Epichlorohydrin was better than glutaraldehyde as a cross‐linking agent; the optimal imprinted Ni2+ concentration for preparing the surface‐imprinted adsorbent was 2 mg (Ni2+) g?1 of mycelium. The adsorption capacity of the surface‐imprinted adsorbent was 42 mg g?1 (at 200 mg dm?3 initial metal ions concentration) and twice that of the mycelium adsorbent. The surface‐imprinted adsorbent can be reused for up to 15 cycles without loss of adsorption capacity. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
An affinity membrane was prepared by coaxial electrospinning and amidoxime (AONFA), and it was applied to selectively recovery Au (III) from an aqueous solution. The static adsorption results showed that, when pH at 5, the maximum adsorption capacity of AONFA membrane for Au (III) was 509.3 mg·g-1. AONFA membrane exhibit much higher affinity and selectivity towards Au (III) than other metal cations. The membrane could be regenerated effectively by mixture solution of thiourea and HCl, and the desorption ratio reached almost 100% after 4 hours desorption. The dead-end filtration results showed that, the membrane utilization efficiency and adsorption capacity can be improved by increasing the flow rate, while increasing the concentration shorted the breakthrough process and had little impact to adsorption capacity. We can flexibly adjust the flow rate and concentration according to the situation to obtain the maximum utilization efficiency of the membrane in filtration process. The dynamic adsorption capacity is higher than the static adsorption capacity. The adsorption mechanism for Au (III) is electrostatic adsorption and reduction. Thus, AONFA membrane filtration was demonstrated to be a promising method for continuous recover Au (III) from wastewater.  相似文献   

17.
A biomass waste of microalgae was chemically modified by immobilizing the functional group of polyethyleneimine to prepare a new type of adsorbent. The adsorption test revealed that this adsorbent exhibited remarkably high selectivity for Pd(II) and Pt(IV) over base metal ions in HCl solution. From the adsorption isotherm, its maximum adsorption capacity for Pd(II) and Pt(IV) was evaluated as 2.0 and 0.8 mmol/g, respectively. This adsorbent also exhibited high affinity and selectivity for Pd(II) and Pt(IV) even in the presence of high concentrations of base metals in actual leach liquor.  相似文献   

18.
The adsorption behavior of collagen fiber‐immobilized bayberry tannin towards Bi(III) at acidic pH values was investigated. The adsorption capacity of the adsorbent towards Bi(III) was 0.348 mmol g?1 at 303 K, and increased with the rise in temperature. The adsorption isotherms of Bi(III) were in the shape of so‐called type II isotherms and could be described by an empirical equation, ln qe = k + (1/n)Ce, which implies that chemical adsorption is predominant at lower concentrations of Bi(III) and that physical adsorption is involved at higher concentrations. The adsorption kinetics of Bi(III) on the immobilized bayberry tannin could be well described by the pseudo‐second‐order rate model, and the adsorption capacities calculated by the model were almost the same as those determined by actual measurements. The adsorbent could be regenerated by using 0.02 mol dm?3 ethylenediaminetetraacetic acid (EDTA) solution after adsorption of Bi(III). The adsorption selectivity of the immobilized bayberry tannin towards Bi(III) in a Cu(II)–Bi(III) binary solution in acidic medium was remarkable. Therefore, it is strongly suggested that the immobilized bayberry tannin could be applied to the removal of Bi(III) from crude Cu(II) samples under proper conditions. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
《分离科学与技术》2012,47(7):1076-1085
In this work, a composite spherical adsorbent, which employs potassium titanium silicate as an adsorption active component, and calcium alginate as a carrier, was successfully prepared. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the adsorbent. The kinetics and thermodynamics of rubidium and cesium ions adsorption were investigated comprehensively, by considering the effects of initial concentration, temperature, solution pH, and coexisting NaCl. According to the determination coefficients, the pseudo second-order kinetic model provided an impressive and comparable correlation, and the second-order rate constant and the initial adsorption rate increase with increasing temperature. In general, the equilibrium adsorption amount increases with the increasing initial metal ion concentration, but decreases with increasing coexisting NaCl. The adsorption capacity keeps constant in the pH value range 3-12 and slightly fades when the temperature increases from 25 to 55°C. Under similar conditions, rubidium and cesium show the similar adsorption amount. The adsorbent has a fast adsorption rate and an adsorption capacity of about 1.55 mmol g?1 for rubidium and 1.47 mmol g?1 for cesium when the initial metal ion concentration is 0.10 mol L?1. The composite adsorbent is effective for the adsorption of rubidium or cesium ions from simulated brines.  相似文献   

20.
BACKGROUND: Hg(II) is one of the most toxic metals and has received particular attention in environmental pollution. Hg(II) pollution is common in water sources, so rapid and efficient methods must be developed for its removal from water samples. Mesoporous silica (MS) is an ideal adsorbent due to its high surface area and biocompatibility. The efficiency and selectivity of MS adsorbents can be improved by surface modification. RESULTS: A new sorbent for trace Hg(II) removal was developed by grafting 1‐(3‐carboxyphenyl)‐2‐thiourea (CPTU) onto SBA‐15 mesoporous silica. The optimum pH range for Hg(II) adsorption was 3‐7 and the maximum static adsorption capacity was 64.5 mg g?1. An enrichment factor of 150 was obtained with a relative standard deviation < 1.5% (n = 8). Common coexisting ions did not interfere with the adsorption of Hg(II) under optimal conditions. Quantitative recovery was achieved by stripping with a mixed solution of 1 mol L?1 HCl and 5% CS(NH2)2. Efficient adsorption capacity of the recycled material could still be maintained at a level of 95% at the 7th cycle. CONCLUSION: 1‐(3‐carboxyphenyl)‐2‐thiourea functionalized SBA‐15 mesoporous silica was synthesized and applied for Hg(II) removal from water samples with high efficiency and selectivity. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号