首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用CFX软件建立二维流场模型,采用有限体积法针对串列双圆柱的静止绕流现象进行了数值模拟计算。首先计算了雷诺数Re=200,不同间距时上下游圆柱的斯托罗哈数,并与参考文献的计算结果进行了对比,证明了该文计算的可靠性。然后分析了不同间距时上下游圆柱的升力系数和阻力系数的变化特点,得出了Re=200时双圆柱绕流的临界间距在3.375D~3.5D之间。最后通过对不同间距下流场变化的研究得出:上下游圆柱的间距小于临界间距时,上游圆柱不存在旋涡脱落;超过临界间距时,上游圆柱出现旋涡脱落;下游圆柱始终存在旋涡脱落现象。研究成果能够为计算流体力学和空气动力学技术的发展提供理论基础。  相似文献   

2.
基于表面涡方法和流固耦合模型研究了Re=2.67×104时的单列圆柱流体诱导振动问题,计算了流体力、振动响应、涡脱落频率等,并给出了涡云图。计算模拟结果很好地重现了刚性单列圆柱在T/D=1.5(小间隙比)下以宽窄尾涡交替和多频为特征的非均匀流态,以及T/D=2.0的涡脱落现象。此外,该文还研究了单列弹性圆柱在T/D=1.5时的流体诱导振动以及流体弹性不稳定问题,计算了SG=1.29时圆柱列的无量纲临界速度。  相似文献   

3.
基于大涡模拟(Large Eddy Simulation)方法,结合高阶TCD/WENO混合格式,对2.5Ma超声速激波/边界层干扰诱导的微楔和微叶片两种微涡流发生器控制进行了数值模拟。数值结果表明:从边界层厚度与分离区大小及结构变化均说明两种涡流发生器对激波边界层分离起到明显抑制作用。对于微楔式涡流发生器,入射激波对微楔尾涡压缩作用明显,使流向涡对的卷吸加强,从而增加边界层内外流体能量交换。微叶片式涡流发生器的控制机理与微楔相似,但其涡对在尾部较远处易破裂,会影响内外流体之间的能量交换。  相似文献   

4.
This paper describes a new monolithic approach based on the fluid pressure Poisson equation (PPE) to solve an interaction problem of incompressible viscous fluid and an elastic body. The PPE is derived so as to be consistent with the coupled equation system for the fluid‐structure interaction (FSI). Based on this approach, we develop two kinds of efficient monolithic methods. In both methods, the fluid pressure is derived implicitly so as to satisfy the incompressibility constraint, and all other unknown variables are derived fully explicitly or partially explicitly. The coefficient matrix of the PPE for the FSI becomes symmetric and positive definite and its condition is insensitive to inhomogeneity of material properties. The arbitrary Lagrangian–Eulerian (ALE) method is employed for the fluid part in order to take into account the deformable fluid‐structure interface. To demonstrate fundamental performances of the proposed approach, the developed two monolithic methods are applied to evaluate the added mass and the added damping of a circular cylinder as well as to simulate the vibration of a rectangular cylinder induced by vortex shedding. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
双圆柱尾流激振受多种因素影响,情况复杂,质量比m*(相同体积的圆柱与流体质量的比值)对双圆柱尾流激振的影响规律尚未澄清。采用数值模拟方法,在低雷诺数下(Re=100),研究了三种质量比(m*=2,10,20)对串列双圆柱尾流致涡激振动特性和尾流流场结构的影响规律,分析了下游圆柱的升力与位移的相位差,探讨了涡激升力与能量输入的内在联系。结果表明:质量比对串列圆柱尾流致涡激振动有重要影响。随着质量比的增大,横流向最大振幅减小,并发生在较小折减速度下,振动锁定区域范围变窄;质量比越小,升力与位移之间的相位差对下游圆柱振幅的影响越显著;在较小质量比时尾流出现“2S”、不规则和平行涡街模态,而在较大质量比时只有“2S”和平行涡街模态。  相似文献   

6.
T. Nakagawa 《Acta Mechanica》1988,72(1-2):131-146
Summary Effects of an airfoil and shock waves on vortex shedding process behind a square cylinder have been examined experimentally at a Mach number of about 0.91 and at a Reynolds number (based on the side lengthD of the square cylinder) of about 4.2×105. The main experimental parameter is the spacing ratioL/D, and is varied from 1.125 to 5.5, whereL is the spacing between the square cylinder and the airfoil.It is found that similarly to the case at subcritical Mach numbers at the supercritical Mach number there exist three patterns of the flow around the square cylinder and airfoil arranged in tandem depending upon the spacing ratioL/D: In the first flow pattern with small spacing ratio, the downstream airfoil is enclosed completely in the vortex formation region of the square cylinder. In the second flow pattern, the shear layers separating from the square cylinder reattach to the airfoil. In the third flow pattern with large spacing the shear layers roll up upstream of the airfoil. The Strouhal number at the supercritical Mach number is higher than that at the subcritical Mach numbers. Shock waves hasten the vortex shedding behind the square cylinder by decreasing the area of asymmetrical part of the vortex formation region with respect to the wake axis, and let the streamwise length of the separating shear layers longer than otherwise.With 8 Figures  相似文献   

7.
The problem of a point vortex and N fixed cylinders in a two-dimensional inviscid fluid is studied and an analytical-numerical solution in the form of an infinite power series for the velocity field is obtained using complex analysis. The velocity distribution for the case of two cylinders is compared with the existing results of the problem of a vortex in an annular region which is conformally mapped onto the exterior of two cylinders. Limiting cases of N cylinders and the vortex, being far away from each other are studied. In these cases, “the dipole approximation” or “the point-island approximation” is derived, and its region of validity is established by numerical tests. The velocity distribution for a geometry of four cylinders placed at the vertices of a square and a vortex is presented. The problem of vortex motion with N cylinders addressed in the paper attracted attention recently owing to its importance in many applications. However, existing solutions using Abelian function theory are sophisticated and the theory is not one of the standard techniques used by applied mathematicians and engineers. Moreover, in the N ≥ 3 cylinder problem, the infinite product involved in the presentation of the Schottky–Klein prime function must also be truncated. So, the approach used in the paper is simple and an alternative to existing methods. This is the main motivation for this study.  相似文献   

8.
为了研究建筑群体周围的流场结构,减小工程设计中由于干扰效应造成的损失,利用粒子图像测速(PIV)结合数值模拟,研究在较大雷诺数及不同间隙工况下,双方柱流场受干扰时的流动特性及流场空间结构。分析升阻力系数、涡脱频率、斯特劳哈尔数等流场特征参数,探究不同间隙对串列双方柱的影响。当Re=3.42×104时,存在临界间隙比G=4使串列双方柱流场结构发生突变,试验观察到流场中出现双稳态现象;当G<4时,下风向方柱平均阻力系数为负值,小于单方柱情况下的阻力,屏蔽效应明显,上风向方柱后方涡脱落被抑制,平均阻力系数出现了明显的降幅,最大降幅约达10%;当G>4时,上下方柱均有涡旋脱落。该结果对于工程应用具有参考意义。  相似文献   

9.
A simple model is proposed to study the interaction of a vorticity structure with a solid body in a two dimensional flow at large Reynolds numbers. The vorticity dynamics is efficiently described in inviscid terms by a multilevel Contour Dynamics technique and the boundary layer is modelled as a vortex sheet attached to the body wall. The collision between two Lamb dipoles, initially with parallel shifted axis, is investigated as a first application of the model in the free space. The evolution of the vorticity field leads to the formation of complicated structures, including filaments and high stretched regions, which require a careful control of the time integration accuracy to gain a better confidence in the numerical results. Several first integrals of motion (e.g. global circulation, vorticity moments, excess energy) are introduced to this purpose and extended, when possible, to the case of vorticity evolution in presence of a solid body.The motion of a finite core vortex, induced by a circular cylinder co-rotating or counter-rotating with respect to the vortex itself, is analyzed first by a Boundary Elements scheme. In this case the interaction doesn't lead to a collision and the model's main features, i.e. the inviscid Contour Dynamics and the vortex sheet attached to the body boundary, seem to be consistent and appropriate to study the vorticity patch evolution. The collision between a Lamb dipole and a circular cylinder has been also investigated. This case is more complex and it would imply a continuous generation of vorticity at the body wall and its separation due to the action of viscosity leading eventually to the vortex rebound phenomenon. Therefore, the present model is suitable only to study the effect of the vorticity structure initial configuration and its behavior in the first stage of the collision process.  相似文献   

10.
为了进一步澄清小间距错列双圆柱的气动干扰机理,该文采用大涡模拟方法,在高雷诺数下(Re=1.4×105),研究了间距为2倍圆柱直径的错列双圆柱的气动性能和流场特性随风攻角的变化规律,分析了两个圆柱气动力系数相关性,探讨了下游圆柱气动力与流场结构的内在联系,对下游圆柱平均升力的流场机理提出了新的解释。研究表明,大涡模拟得到的结果与风洞试验值吻合良好;下游圆柱的气动性能、流场结构和两个圆柱气动力相关性均会随风攻角发生剧烈变化;风攻角在0°~10°时,下游圆柱受平均负阻力作用,其原因分别为两圆柱间的回流区和间隙流;风攻角在10°附近时,下游圆柱受很大平均升力作用,风压停滞点偏移、两圆柱间高速间隙流、下游圆柱间隙侧剪切层的提前分离和再附是平均升力出现的三个因素。  相似文献   

11.
A first attempt is made for identifying the wake characteristics of circular cylinder confined by a wavy wall at laminar flow regime. Numerical study of flow characteristics past circular cylinder with wavy-wall confinement perpendicular to cylinder axis has been carried out in the range of Reynolds number 20–100. The finite volume-based CFD solver Ansys Fluent (Version 15.0) is used for computations. The results are presented in the form of streamline plots, mean drag co-efficient, flow separation angle and recirculation length. Wavy-wall confinement leads to highly significant changes in the cylinder wake such as the evolution of strong x-plane vortices, enhanced fluid mixing, wake suppression near the crest region and vortex stretching near the trough region on the downstream of the cylinder has been observed. Flow separation angle varies significantly along the axis of the cylinder. Increased wall shear stress on rear surface of the cylinder has also been observed. The part of vorticity magnitude as compared to strain rate has been distinguished and identified using vortex identification methods such as Q-criterion and Lambda-2 criterion.  相似文献   

12.
Summary An experimental investigation on unsteady airfoil-vortex interaction has been done. The incident vortex, to interact with a downstream airfoil (NACA 0018, chord lengthc=20 mm), is generated by a square cylinder (side lengthD=20 mm). The square cylinder and airfoil are arranged in tandem and the spacing ratioL/D of the central distance to the side length is set a constant value of 4.625. The free stream Mach numbers are varied between 0.153 and 0.750, whereas the free stream Reynolds numbers (based on the side lengthD) are varied between 0.713×105 and 3.44×105.It is found that as the incident vortex approaches the airfoil, the circulation and scale are decreased until it arrives at a position near the leading edge of the airfoil. During this stage, some circulation of the incident vortex is transferred to the secondary vortex generated on the airfoil opposite to the surface that the incident vortex approaches. Thus, circulation and scale of the secondary vortex are increased. However, after the incident vortex goes further downstream, no circulation of the incident vortex is transferred to the secondary vortex effectively. As the result, both of the incident vortex and secondary vortex decay due to the viscous dissipation through the interaction with the boundary layer of the airfoil. The locus of the incident vortex is deviated in such a way that it goes away from the airfoil. The streamwise position of the secondary vortex is adjusted by the incident vortex, orvice versa, so as to meet each other just behind the trailing edge of the airfoil.With 8 Figures  相似文献   

13.
T Matsui 《Sadhana》1981,4(2):239-257
An actual vortex in the Kármán vortex street downstream of a circular cylinder has a core of finite dimension which increases downstream. The circulation of the vortex is nearly constant. The ratiob/a which is 0.281 according to the theory of Kármán, grows from 0.2 to 0.4 in the near wake. In the flow about a circular cylinder rotating in a uniform flow, a Kármán vortex street, Görtler-type vortices and Taylor vortices are generated at the same time. In the flow about a circular cylinder impulsively started with a constant velocity, the primary twin vortices behind the cylinder induce secondary twin vortices near the separation point. At the beginning of the motion, the separation does not occur even though a reverse flow is observed in the boundary layer. Mutual slip-through of a pair of vortex rings was achieved by increasing the Reynolds number. A vortex ring rebounds from a plane surface due to the separation of the flow on the surface induced by the vortex ring, and the secondary vortex ring is formed from the separated shear layer.  相似文献   

14.
We present a detailed numerical investigation of three unsteady incompressible flow problems involving periodic arrays of staggered cylinders. The first problem is a uniperiodic flow with two cylinders in each cell of periodicity. The second problem is a biperiodic flow with two cylinders in each cell, and the last problem is a uniperiodic flow with ten cylinders. Both uniperiodic flows are periodic in the direction perpendicular to the main flow direction. In all three cases, the Reynolds number based on the cylinder diameter is 100, and initially the flow field has local symmetries with respect to the axes of the cylinders parallel to the main flow direction. Later on, these symmetries break, vortex shedding is initiated, and gradually the scale of the shedding increases until a temporally periodic flow field is reached.We furnish extensive flow data, including the vorticity and stream function fields at various instants during the temporal evolution of the flow field, time histories of the drag and lift coefficients, Strouhal number, initial and mean drag coefficients, amplitude of the drag and lift coefficient oscillations, and the phase relationships between the drag and lift oscillations associated with each cylinder. Our data confirms that, at this Reynolds number, there are no stable steady-state solutions with local symmetries. Of course, one can obtain such unphysical solutions by assuming symmetry conditions along the axes of the cylinders parallel to the main flow direction and taking half of the computational domain needed normally. In such cases, the steady-state flow fields obtained would be identical to the flow fields observed at the initial stages of our computations. However, we show that such flow fields do not represent the temporally periodic flow fields even in a time-averaged sense, because, in all three cases, the initial drag coefficients are different from the mean drag coefficients. Therefore, we conclude that stability studies involving periodic arrays of cylinders should be carried out, as it is done in this work, with the true implementation of the spatial periodicity.  相似文献   

15.
Dilip K. Maiti 《Acta Mechanica》2011,222(3-4):273-286
Numerically simulated results are presented for a family of rectangular cylinders with aspect ratios r 1 (=b/a with height a and width b) ranging from 0.1 to 1.0 (square cylinder) to gain a better insight into the dependency of the aerodynamic characteristics on the operational dimensionless parameters, namely Reynolds number Re and aspect ratio r 1. This work describes the flow from a long cylinder of rectangular cross-section placed parallel to a wall and subjected to a uniform shear flow. The flow is investigated in the laminar Reynolds number range (based on the incident stream at the cylinder upstream face and the height of the cylinder) at cylinder to wall gap height 0.5 times the cylinder height. The governing unsteady Navier?CStokes equations are solved numerically through a finite volume method on a staggered grid system using QUICK scheme for convective terms. The resulting equations are then solved by an implicit, time-marching, pressure correction-based SIMPLE algorithm for Reynolds number up to 1,000. The critical Reynolds numbers at which vortex shedding from the cylinder is started are specified for both the cases: far from the wall and near to the wall. It is reported that the vortex shedding from the rectangular cylinder of lower aspect ratio r 1 (???0.25) becomes regular and insensitive to the Reynolds number, while the aerodynamic characteristics of the rectangular cylinders with higher aspect ratio r 1 (???0.5) are strongly dependent on the Reynolds number.  相似文献   

16.
基于大涡模拟(LES)方法,结合WENO格式与自适应网格加密(AMR)技术及沉浸边界法(IBM),对来流马赫数为Ma =2.5条件下的平板上微型三角楔绕流流场进行了数值模拟。数值模拟表明微型三角楔涡流发生器可以显著改变超声速流体边界层结构。计算结果清晰地显示了三角楔上游分离区的流场结构和下游各涡的流态,同时计算表明,微楔对边界层控制过程中,其下游的流向涡对与涡环结构都起了重要作用,并对其作用过程进行了讨论。数值计算与相关实验结果相符,且提供了流场的重要细节,揭示了微楔的控制机理,可为超声速边界层控制研究提供重要支持。  相似文献   

17.
The present work introduces an efficient technique for the deformation of block‐structured grids occurring in simulations of fluid–structure interaction (FSI) problems relying on large‐eddy simulation (LES). The proposed hybrid approach combines the advantages of the inverse distance weighting (IDW) interpolation with the simplicity and low computational effort of transfinite interpolation (TFI), while preserving the mesh quality in boundary layers. It is an improvement over the state‐of‐the‐art currently in use. To reach this objective, in a first step, three elementary mesh deformation methods (TFI, IDW, and radial basis functions) are investigated based on several test cases of different complexities analyzing not only their capabilities but also their computational costs. That not only allows to point out the advantages of each method but also demonstrates their drawbacks. Based on these specific properties of the different methods, a hybrid methodology is suggested that splits the entire grid deformation into two steps: first, the movement of the block‐boundaries of the block‐structured grid and second, the deformation of each block of the grid. Both steps rely on different methodologies, which allows to work out the most appropriate method for each step leading to a reasonable compromise between the grid quality achieved and the computational effort required. Finally, a hybrid IDW‐TFI methodology is suggested that best fits to the specific requirements of coupled FSI‐LES applications. This hybrid procedure is then applied to a real‐life FSI‐LES case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, the coupled thermoelasticity behavior of functionally graded thick hollow cylinders is studied. The governing coupled thermoelasticity and the energy equations are solved for a finite length functionally graded cylinder subjected to thermal shock load. The coupled thermoelastic equations are considered based on Green–Naghdi theory. The mechanical properties of cylinder are graded across the thickness as a power law function of radius. The cylinder is assumed to be made of many isotropic sub-cylinders (layers) across the thickness. Functionally graded properties are created by suitable arrangement of layers and governing equations are expanded in longitudinal direction by means of trigonometric function expansion. The Galerkin Finite Element and Newmark Methods are used to analyze the cylinder. The dynamic behavior of temperature distribution, mechanical displacement and thermal stresses is obtained and discussed. The second sound and elastic wave propagation are determined for various kinds of variation in the mechanical properties. The comparison of present results with published data shows the excellent agreement.  相似文献   

19.
采用物理模型试验和CFD数值模拟方法研究了大长径比、低质量比的柔性串列圆柱体涡激振动现象。通过分析串列圆柱振幅、振动频率、受力特性和流场结构等特性,着重研究流速和圆柱间距对下游圆柱涡激振动特性影响。研究发现,上、下游圆柱涡激振动幅值差别较大,并且当流速大于某个值后,两者主导频率也不相同,由此提出分离约化速度U r。流速和间距都会影响上游尾流对下游圆柱的作用,其中流速会影响上游尾涡强度及其发展程度,间距会影响上游尾涡发展空间及其与下游圆柱的接触位置。  相似文献   

20.
通过刚性模型测压风洞试验,在均匀流场中对比研究了不同数量和不同间距串列多圆柱气动力的干扰效应。串列多圆柱两相邻圆柱的中心距L与圆柱的直径D之比L/D的变化范围为1.2~12.0。圆柱数量的变化范围为1~4。试验的雷诺数为3.4×104。试验结果发现:串列多圆柱发生流态切换的临界间距比(L/D)cr为3.5~4.0,在临界间距附近,前两个圆柱的时均阻力系数和脉动升力系数突升,其余圆柱则突降,所有圆柱的斯托罗哈数均突升;气动干扰对串列多圆柱时均阻力系数和斯托罗哈数的影响主要表现为减小效应;后方干扰圆柱数量的增加对上游第一个圆柱气动力的影响基本可以忽略;前方干扰圆柱数量的增加对下游最后一个圆柱的气动力影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号