首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— A viewing‐angle‐controllable liquid‐crystal display (LCD) is proposed. When the device is only driven by an in‐plane electric field, it exhibits a wide‐viewing‐angle (WVA) mode. And it exhibits narrow‐viewing‐angle (NVA) mode when it is driven by a vertical electric field as well as an in‐plane electric field. In this manner, the viewing angle of the device can be controlled from 100° to 30°. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

2.
Abstract— A continuous‐viewing‐angle‐controllable liquid‐crystal display (LCD) using a blue‐phase liquid crystal is proposed. To realize both wide‐viewing‐angle (WVA) mode and narrow‐viewing‐angle (NVA) mode with a single liquid‐crystal panel, each pixel is divided into a main pixel and a subpixel. The main pixel is for displaying images in both modes. The subpixel is for displaying images in WVA mode and controlling the viewing angle in NVA mode. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

3.
Abstract— Viewing‐angle dependences of the contrast ratio and color shift of LCDs have been radically improved as evidenced by the increasing application of LCDs in high‐quality television. This paper describes the concept of optical compensation and the fundamental characteristics of the viewing‐angle property for various LC modes.  相似文献   

4.
Abstract— A transflective polymer‐stabilized blue‐phase liquid‐crystal display (BP‐LCD) with a corrugated electrode structure is proposed. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, two device structures are proposed. The first device structure has the same inclination angles but different cell gaps in the T and R regions. And the second device structure has the same cell gap but different inclination angles in the T and R regions. Both of the device structures can obtain well‐matched VT and VR curves. This display exhibits low operating voltage, high optical efficiency, and a wide viewing angle.  相似文献   

5.
Abstract— A wide‐view transflective liquid‐crystal display (LCD) capable of switching between transmissive and reflective modes in response to different ambient‐light conditions is proposed. This transflective LCD adopts a single‐cell‐gap multi‐domain vertical‐alignment (MVA) cell that exhibits high contrast ratio, wide‐viewing angle, and good light transmittance (T) and reflectance (R). Under proper cell optimization, a good match between the VT and VR curves can also be obtained for single‐gamma‐curve driving.  相似文献   

6.
A transflective blue‐phase liquid crystal display (TRBP‐LCD) based on fringe in‐plane switching (FIS) electrodes is proposed. The proposed structure generates combined fringe and in‐plane electric fields that cause more liquid crystal (LC) molecules to reorient almost in plane above and between the pixel electrodes. The fringe field is mainly generated in the transmissive (T) region, and the horizontal electric field is mainly generated in the reflective (R) region. By optimizing the width of the pixel electrodes and the gap between two adjacent pixel electrodes, the different electric field intensity in the T and R regions contribute to balance the optical phase retardation between the T and R regions. As a result, the proposed TRBP‐LCD exhibits a low operating voltage and high optical efficiency, while it preserves a relatively simple fabrication process.  相似文献   

7.
Abstract— An improved 3‐D/2‐D switchable display system with enhanced depth and viewing angle by adding two LCD panels to an integral imaging system has been realized. The proposed system uses the see‐through property of an LCD panel and displays multiple sets of elemental images on the LCD panels to integrate them on multiple locations simultaneously. As a result, the depth of the 3‐D image can be enhanced. For wide viewing angles, the time‐multiplexing method was adopted by displaying mask patterns on the front LCD panel. In addition, another technique to increase the contrast ratio of the proposed system has also been developed. Some experimental results will be provided.  相似文献   

8.
Abstract— A type of polymer‐stabilized blue‐phase liquid crystal, which can be used in a low‐temperature environment, is proposed. The blue‐phase range after polymerization was widened to more than 73°C, and the blue‐phase texture is very stable even at a temperature as low as ?35°C. The electro‐optical performances dependence on polymer concentration was investigated. The results indicate that the saturation voltage increases and the hysteresis enhances as the polymer concentration increases. The rise and decay times could reach as low as 391 and 789 μsec, respectively. Such material also shows good electro‐optical behavior at a temperature of ?35°C. In addition, the Kerr constant was tested under a uniformly distributed electric field to be 2.195 nm/V2 at room temperature and 2.077 nm/V2 at ?35°C. The Kerr constant tested under white‐light illumination was 1.975 nm/V2, which shows a small dispersion.  相似文献   

9.
We design a blue phase dual‐view liquid crystal display (BP DVLCD) based on a directional backlight system. Combining the patterned electrodes with the directional backlight system, the cross‐talk ratio is reduced to only 1.17%. Moreover, the resolution and brightness will be tripled by using field‐sequential color display. In the preferred viewing area, the BP DVLCD has a high contrast ratio of ~1700:1.  相似文献   

10.
Abstract— Liquid‐crystal displays (LCDs) have notable variation in luminance and perceived contrast as a function of the angle from which they are viewed. Though this is an important performance issue for LCDs, most evaluation techniques for assessing this variation have been limited to laboratory settings. This study demonstrates the use of a photographic technique for such an evaluation. The technique is based on an actively cooled charge‐coupled‐device (CCD) detector in combination with a macro lens covering a circular angular range (θ) of ±42.5°. The camera was used to evaluate the luminance and perceived contrast properties of an LCD. Uniform field images corresponding to 17 equally spaced gray‐scale values in the digital driving level (DDL) range of the display system were acquired. The 12‐bit gray‐scale digital images produced by the camera were converted to luminance units (cd/m2) via the measured luminance vs. DDL response function of the camera. The changes in perceived contrast as a function of viewing angle were derived from the Barten model of the gray‐scale response of the human‐visual system using the methods proposed by the AAPM TG18 Report. The results of this photographic technique were compared to measurements acquired from a similar display using a Fourier‐optics‐based luminance meter. The results of the two methods generally agreed to within 5%. The photographic methods used were found to be accurate and robust for in‐field assessment of the angular response of LCDs over the FOV of the camera.  相似文献   

11.
We have developed a polymer‐stabilized blue‐phase LCD in which the diffraction wavelength of blue‐phase liquid crystal is in the ultraviolet region and which is driven at a low voltage of V100 = 27 V. Prototypes of 3.4‐in polymer‐stabilized blue‐phase LCDs were made, which include a highly reliable crystalline oxide semiconductor. We succeeded in fabricating not a test cell but a display having a contrast ratio higher than 1000 : 1 for the first time in the world.  相似文献   

12.
Abstract— A low‐voltage (~10 Vrms) and high‐transmittance (~90%) polymer‐stabilized blue‐phase liquid‐crystal (BPLC) device with a slanted‐electrodes structure is proposed. Unlike the vertical‐field‐switching (VFS) mode in which oblique incident light and a vertical field are employed, the proposed device utilizes normal incident light and an oblique field. The slanted electrodes generate a strong and uniform oblique electric field, which contributes in obtaining low voltage and high transmittance. Moreover, no couple films or prism sheets are needed, which helps to enhance the optical efficiency and simplify of the device structure. This device has great potential application for emerging BPLC displays and photonic devices.  相似文献   

13.
Abstract— A reflective polarizer‐free display using dye‐doped polymer‐stabilized blue‐phase liquid crystal (DDPSBP‐LC) has been demonstrated. The mechanism is a combination of electrically tunable light absorption and Bragg reflection. In this paper, the influence of light absorption in DDPSBP‐LC by changing the dye concentration and absorption paths has been studied. Increased dye concentration can improve the contrast ratio of DDPSBP‐LC; however, the response time is the tradeoff. Increasing the cell gap can improve the contrast ratio of DDPSBP‐LC; however, the response time remains the same. The study of DDPSBP‐LC can help in shutter‐glass applications of 3‐D displays and electronic paper.  相似文献   

14.
Abstract— Optically compensated bend (OCB) mode is a promising technology, due to its wide range of viewing angles without gray‐scale inversion or color shift, fast response, high contrast ratio, and wide temperature range. This paper summarizes the fundamental characteristics of OCB mode and discusses the development of field‐sequential‐color displays and 3‐D displays for future high‐quality display applications.  相似文献   

15.
A 4.4‐inch 2D/3D switchable full high definition (FHD) six‐view 3D display with 3D resolution greater than 170 ppi has been accomplished. In addition to adopting low temperature polysilicon technology (LTPS), which is most suitable for high resolution displays, a new RGBW pixel arrangement using four‐square sub‐pixels has been devised. In 2D, a resolution greater than 500 ppi, accompanied with high luminance, has been achieved. A new liquid crystal lens (LCL) has been exploited for 2D/3D switching. By employing a special multielectrode structure and dedicated manufacturing process, an optical focal ratio less than 20%, which is essential for low 3D cross talk for a six‐view 3D display, has been attained by adopting the LCL. In the vertical direction of the display, there is no cross talk increase when the viewing position is changed because of the new pixel structure. The strong focal strength of the LCL combined with a revised high‐density multi‐view design give rise to a wide 3D viewing angle greater than 20 degrees in the horizontal direction and minimum cross talk less than 10%.  相似文献   

16.
Abstract— A blue‐phase liquid‐crystal grating is proposed by applying a vertical electric field with lateral periodic distribution. Simulation on electric‐field distribution was also carried out, the results of which suggest the alternation of isotropic and ordinary refractive indices in the lateral direction. Through the electrode configuration design, both 1 D and 2D gratings were demonstrated with high transmittance of ca. 85%. The diffraction efficiency of the first order reached up to 38.7% and 1 7.8% for the 1D and 2D cases, respectively. The field‐induced fast phase modulation permits a rapid switching of diffraction orders down to the submillisecond scale.  相似文献   

17.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

18.
A viewing angle enhanced integral imaging display, which consists of a double microlens array, and a display panel is proposed. The double microlens array includes a convex microlens array and a concave microlens array. The display panel is used to display original elemental image array. The convex microlens array, located near the display panel, is used to provide a virtual elemental image array for the concave microlens array. The concave microlens array, located far away from the display panel, is used to display integral images with the virtual elemental image array. Compared with the original elemental image, the pitch for each virtual elemental image is magnified by the corresponding convex microlens. As a result, the viewing angle is expanded. Simulations based on ray‐tracing are performed and the results agree well with the theory.  相似文献   

19.
Abstract— The viewing angle and flipping areas of a conventional integral‐imaging three‐dimensional (3‐D) display were analyzed. The pitches of the elemental image and micro‐lens are identical. The more micro‐lenses used, the smaller the viewing angle becomes and the wider the flipping areas become. In this paper, an improved integral‐imaging 3‐D display is presented. The pitch of the elemental image is larger than that of the micro‐lens. The single‐viewing angles of all micro‐lenses converge and there are no flipping areas at the optimal viewing distance. Computational reconstructions of improved and conventional integral imaging were carried out, and experimental results demonstrate that improved integral‐imaging 3‐D displays have a wider viewing angle than the conventional ones and do not have flipping areas at the optimal viewing distance.  相似文献   

20.
Abstract— Three nonchiral‐smectic‐C (NSC) liquid‐crystal (LC) modes having fast‐response and wide‐viewing characteristics applicable for next‐generation LCDs are described. In the NSC LC modes, fast analog optical modulation is achieved by means of a coupling with an external electric field in a dielectrically driving scheme. The fast response results intrinsically from no interlayer interferences during molecular rotation in the layered structure of the NSC LC. Moreover, the self‐formation of two domains and the in‐plane variations of the optic axis produce the wide‐viewing properties. A step‐wise temperature annealing process is employed for a stable and well‐aligned smectic layer structure in a time‐efficient manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号