首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New talc/PBAT hybrid materials were prepared through reactive extrusion. First, PBAT was free‐radically grafted with MA to improve the interfacial adhesion between PBAT and talc. Then, the resulting MA‐g‐PBAT was reactively melt‐blended with talc through esterification reactions of MA moieties with the silanol functions from talc. Sn(Oct)2 and DMAP were used as catalysts. Interestingly, the tensile properties for these compatibilized composites were improved due to a better interfacial adhesion between both partners. XPS showed the formation of covalent ester bonds between the silanol functions from talc particles, and the MA moieties grafted onto the polyester backbones.

  相似文献   


2.
MWCNT‐based composites have been successfully synthesized via layer‐by‐layer self‐assembly of crosslinked polyphosphazene nanoparticles on the surface of MWCNTs. The amino‐terminated CNTs were characterized by XPS, FT‐IR spectroscopy, EDS, XRD and TEM. The degree of functionalization could be controlled by simply changing the mass of hexachlorocyclotriphosphazene with 4,4′‐diaminodiphenyl ether. The activity of the surface amino groups was confirmed by the reaction of these groups with HAuCl4. In addition, the effects of the mass of HCCP and ODA ratios on the content of the surface amino groups was also investigated.

  相似文献   


3.
UV‐curable inks based on a poly(ethylene glycol) diacrylate (PEGDA) matrix and containing a dispersion of aqueous Ag nanoparticles in different amounts from 10 to 50% are prepared for the fabrication of inkjet printed resistors. The composition is adapted to the inkjet requirements in terms of viscosity, surface tension, and particle size. The gel content, glass transition temperature, conversion, UV‐Vis absorption, morphology, and DC electrical properties of the materials are characterized. It is found that the NPs dispersed in the polymeric matrix realize a percolating path by aligning themselves in chains, which results in a reduction of the percolation threshold. Thus, resistivity is well beyond the dissipative range.

  相似文献   


4.
Toughness enhancement of S‐(S/B)‐S triblock copolymers via a molecular‐weight‐controlled pathway is demonstrated. The post‐yield crack toughness behavior of the triblock copolymers uniquely reveal a brittle‐to‐semiductile‐to‐ductile transition with increasing while keeping the basic molecular architecture fixed. TEM and SAXS investigations indicated three distinct morphologies as a function of χeffN as a consequence of the increase in : (i) a homogeneous structure without phase‐separation, (ii) a weakly segregated structure, and (iii) a lamellar structure. The increase in crack toughness is also reaffirmed from kinetic and strain field analysis studies concerning dynamics of crack growth in block copolymers with high PS content.

  相似文献   


5.
We present a new strategy for fabricating thermally responsive adjustable stiffness materials. A microfabricated heater embedded within a composite film is used to modulate the temperature of a low melting point polymer. Currents ranging from 0 to 200 mA were applied to the microheater and modulated material stiffness ≈100‐fold between 1.03 GPa and 10.9 MPa. The outside temperature of the composite ranged from 23 to 45.5 °C over this range of currents, suggesting its possible use in biomedical applications. The softened composite was bent into arbitrary shapes and allowed to restiffen, highlighting the reconfigurable nature of the material.

  相似文献   


6.
The viscosity functions of long‐chain branched metallocene‐catalyzed ethene homopolymers and copolymers (LCB‐mPE) were described by an extended Carreau‐Yasuda model. The two characteristic relaxation times, λ1 and λ2, and the slope of the viscosity function between these two characteristic relaxation times can be correlated to the zero shear‐rate viscosity, η0, and the molar mass . The characteristic relaxation times, λ1 and λ2 (describing the main curvatures of the viscosity function) exhibit a power law dependency on the molar mass, . The parameterization of the viscosity function can be used for a molecular characterization and flow simulations of various kinds.

  相似文献   


7.
A method for determining the correlation between the mixing of two reactive polymers and the structural and mechanical properties of the formed hydrogels is presented. Rheological measurements show that insufficient mixing gives rise to soft and not fully crosslinked hydrogels while excessive mixing beyond gel point results in weaker hydrogels due to potential breakage of their 3D network. Furthermore, the hydrogels swell significantly more in cell culture medium than in phosphate‐buffered saline, attributed to interactions with additional molecules such as proteins. Thus, moderate mixing gives rise to the most homogenous and mechanically stable hydrogels and the choice of medium e.g., for release experiments, should be consistent in order to avoid unnecessary variations in the data caused by different swelling profiles.

  相似文献   


8.
A systematic study of the effects of , flow rate, voltage, and composition on the morphology of electrospun PLGA nanofibers is reported. It is shown that changes of voltage and flow rate do not appreciably affect the morphology. However, the of PLGA predominantly determines the formation of bead structures. Uniform electrospun PLGA nanofibers with controllable diameters can be formed through optimization. Further, multi‐walled carbon nanotubes can be incorporated into the PLGA nanofibers, significantly enhancing their tensile strength and elasticity without compromising the uniform morphology. The variable size, porosity, and composition of the nanofibers are essential for their applications in regenerative medicine.

  相似文献   


9.
A new completely biodegradable shape‐memory elastomer consisting of PLLCA reinforced by in situ PGA fibrillation is described. The manufacturing processes and shape‐memory effects of the composites are discussed. DMA results reveal a strong interface interaction between in situ PGA fibrillation and PLLCA. Compared with the SMP‐based composites that are commonly used, the shape‐memory test shows that in situ PGA fibrillation can improve the recovery properties of PLLCA; in fact, the shape‐recovery rate increases from 80.5 to 93.2%.

  相似文献   


10.
Nanoparticles based on Al(III) and Zr(IV) melamine phosphate and sulfate, respectively, are prepared. Cone calorimeter measurements reveal that compared to an unfilled polyacrylate matrix the polyacrylate‐based nanocomposites containing the novel nanoparticles display significantly improved flame‐retardant properties as evidenced by the corresponding values for the peak heat release rate, the time‐to‐ignition, the values for the peak rate of heat release, the total heat evolved, the time to the CO peak and the CO yield. Concomitantly, the mechanical properties of the acrylate‐based composite coatings, i.e., the Martens and surface hardness, can also be significantly improved.

  相似文献   


11.
Multi‐wall CNT/poly[ethylene‐co‐(methacrylic acid)] composites were prepared by melt mixing. To improve dispersion and promote polymer/nanotube interactions, a novel non‐covalent compatibilizer is synthesized by reacting the polymer with 4‐(aminomethyl)pyridine. The composite based on the pristine polymer shows electrical and rheological percolation thresholds at nanotube loadings of 1.85 and 1.4 wt%, respectively. When 5 wt% of the pyridine‐modified compatibilizer is added, the corresponding values are reduced to 1.44 and 0.8 wt%, respectively. The electrical resistivity decreases even further as 10 wt% of the novel dispersing agent is used. Microscopy and Raman spectroscopy confirm the improved dispersion and π‐interactions established during melt mixing.

  相似文献   


12.
Novel silver/polymer composites based on thiol‐ene chemistry are prepared by an in situ bottom‐up approach. The in situ synthesis of silver particles inside the polymer matrix is achieved in one pot by photoreduction reaction in presence of a silver precursor and the concurrent crosslinking reaction. XPS analysis confirms the formation of silver particles; TEM morphological investigation shows a very good dispersion and distribution of the nanometric silver particles within the thiol‐ene network. Antimicrobial properties of the photocured hybrids are also evaluated.

  相似文献   


13.
Bio‐stereo nanocomposite polylactides are prepared by polymerization followed by stereocomplexation in scCO2/dichloromethane through in situ polymerization and master batch processes. The bio‐stereo nanocomposite polylactides show intercalated‐exfoliated and fully exfoliated nanoscale clay distribution in a perfect stereocomplex polylactide matrix. In situ polymerization proves better strategy to produce well‐exfoliated silicate layers in the stereocomplex matrix compared to the MB route that increases the melting temperature by up to ≈64 °C. The thermal properties of these materials maintain both stereocomplex and nanocomposite features simultaneously. The results open a new and versatile way to develop polylactide‐based materials.

  相似文献   


14.
Iron‐oxide nanoparticles were functionalized with epoxy groups and were dispersed into a dicyclo‐aliphatic epoxy resin to obtain organic‐inorganic hybrid coatings via cationic ring‐opening photopolymerization. TEM investigations confirmed that the filler has a size‐distribution range between 5 to 20 nm, without the formation of aggregates. The influence of the presence of Fe2O3 on the rate of polymerization was investigated by real time FT‐IR spectroscopy. Increasing the iron‐oxide nanofiller in the photocurable resin induced an increase in the Tg values. By controlling the phase separation it was possible to obtain transparent iron‐oxide nanostructured coatings, characterized by improved hardness.

  相似文献   


15.
A novel multi‐compound electrospinning method is described, using high‐conductivity aqueous solutions for the inner fluid and low‐conductivity polymeric solutions for the outer fluids. The driving fluid among inner fluids at the equivalent conductivity is switched at a certain frequency. The switching of the Taylor cone results in the alternative embedding of inner components. Also, the number of inner capillaries is proportional to the encapsulation components. Therefore, our method might be useful to alternatively encapsulate a variety of water‐soluble materials in fibers.

  相似文献   


16.
Bio‐based TPUs from dimer acid‐based polyols are synthesised by using a two‐step prepolymer process including reactive processing. The effect of the polyol on the final chemical structures, morphologies and properties of bio‐based TPUs is evaluated by different analytical techniques. It is observed that the percentage of hard segment (HS) distributed in organised and unorganised phases is a key factor to control the materials properties. DSC reveals that the percentages of HS dispersed in the soft domains are high at low experimental HS contents. Multiscale microscopies show better defined organised structures with increasing HS content in TPUs, highlighting the importance of the distribution between hard and soft segments in the material structure.

  相似文献   


17.
Starting from commercially‐available, polymer‐based reactive resins like acrylates or unsaturated polyesters, a systematic investigation was carried out as to the influence organic dopants like phenanthrene and its derivatives have on the optical and thermal properties of the mixtures resulting from curing to the final thermoplastic polymer. The refractive index of PMMA at 633 nm can be increased, starting from 1.49 for the pure polymer, up to a value of around 1.55, and, in the case of the polyester, from 1.565 up to 1.6. The transmittance in the visible range is slightly affected at a lower dopant concentration of up to 10 wt.‐%, and remains better than 80% for a sample with a thickness of 1 mm, in the range between 500 and 800 nm. An unwanted side‐effect of larger dopant concentrations is to lower the glass transition temperature significantly.

  相似文献   


18.
A new class of polymer materials is reviewed, the SPCs, in which the matrix and the reinforcement share the same chemical composition. In addition to their milder environmental impact as compared to traditional polymer composites, they show superior mechanical performance mainly due to the improved adhesion between matrix and reinforcement. Another advantage of SPCs is the missing dispersion step in their production, thus contrasting the common polymer nanocomposites. Definition, manufacturing, classification, and the application opportunities of SPCs are described. Special attention is paid on the very new members of the SPC family, the micro‐ and nanofibrillar SPCs, including the techniques for preparation of their starting neat micro‐ and nanofibrils using bulk polymers.

  相似文献   


19.
An amphiphilic LCBC PEO‐b‐PAz consisting of flexible PEO as a hydrophilic block and poly(methacrylic acid) containing an azobenzene moiety in side chain as a hydrophobic LC segment was synthesized and used to fabricated microporous films by spin‐coating method under a dry environment. With the help of a small amount of water, well‐arranged ellipsoidal micropores embedded in a LC matrix were obtained and the pore size is in the range of several tens µm of water. The influence of water content and rotational speed was studied in detail. It was found that regularly patterned microporous films can be prepared with certain water content, and the pore size can be easily tailored through changing the rotational speed. The obtained microporous structures showed good thermal and photo stability.

  相似文献   


20.
Rubbery thermosets prepared by ROMP of a modified castor oil containing norbornene moieties and cyclooctene have been synthesized and characterized. The thermosets range from 55 to 85 wt.‐% oil and are flexible, slightly transparent and have a sand‐like hue. Increasing concentration of the modified castor oil in the feed ratio results in an increase in the extracted (unreacted or oligomeric) components in the final thermoset. Thermogravimetric analysis reveals that all of the specimens have temperatures of maximum degradation around 500 °C. DMA and TGA analysis on solvent‐extracted specimens show that the presence of the soluble fractions helps to plasticize the materials and give added thermal stability.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号