首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
BACKGROUND: Chiral solvent extraction is a potentially attractive chiral separation technique. It is essential to know the intrinsic complexation kinetics for selection, design and operation of reactive extraction equipment and for reliable scale‐up. The objective of this research is to study the kinetics of biphasic recognition chiral extraction of α‐cyclohexyl‐mandelic acid (α‐CHMA) enantiomers using a modified Lewis cell. RESULTS: The experimental results demonstrate that the extraction reaction kinetics is fast, and the reactions are first order with respect to α‐CHMA and second order with respect to D‐IBTA, with forward rate constants of 6.54 × 10?4 mol?2 m6 s?1 for S‐α‐CHMA and 6.84 × 10?4 mol?2 m6 s?1 for R‐α‐CHMA. With increase of HP‐β‐CD concentration in aqueous phase, enantioselectivity increases, while the overall mass transfer coefficients decrease. CONCLUSIONS: Sufficient enantioselectivity and fast kinetics of extraction can be obtained in the BRCE system at HP‐β‐CD concentration of 0.1 mol L?1 and D‐IBTA concentration of 0.2 mol L?1. These data will be useful in the design of extraction processes. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
The aim of this work is to evaluate both the toxic effect of different organic media on the stereospecific oxidation of 2‐methyl‐1,3‐propanediol to R‐(−)‐β‐hydroxyisobutyric (HIBA) in two‐phase systems and the extraction ability and selectivity of these non‐water miscible phases. Apart from traditional solvents, specific organic acid‐complexing carriers like TOPO, TOA and Aliquat 336 dissolved in different diluents have been studied. Special interest has been focused on the effect of the concentration of the organic phase extractants and the pH of the aqueous phase on the extraction system. TOPO dissolved in isooctane enabled higher Kp values at lower concentrations to be attained and resulted in lower toxicity, but its extractive capacity is strongly dependent on the pH. Our results suggest that using a compromise pH value between optimum for bioconversion and extraction, TOPO dissolved in isooctane can be successfully used as an extractive phase for HIBA production in a two‐phase system. © 2000 Society of Chemical Industry  相似文献   

3.
Both enantiomers of optically pure 4‐bromo‐3‐hydroxybutanoate, which is an important chiral building block in the syntheses of various biologically active compounds including statins, were synthesized from rac‐4‐bromomethyl‐β‐lactone through kinetic resolution. Candida antarctica lipase B (CAL‐B) enantioselectively catalyzes the ring opening of the β‐lactone with ethanol to yield ethyl (R)‐4‐bromo‐3‐hydroxybutanoate with high enantioselectivity (E>200). The unreacted (S)‐4‐bromomethyl‐β‐lactone was converted to ethyl (S)‐4‐bromo‐3‐hydroxybutanoate (>99% ee), which can be further transformed to ethyl (R)‐4‐cyano‐3‐hydroxybutanoate, through an acid‐catalyzed ring opening in ethanol. Molecular modeling revealed that the stereocenter of the fast‐reacting enantiomer, (R)‐bromomethyl‐β‐lactone, is ∼2 Å from the reacting carbonyl carbon. In addition, the slow‐reacting enantiomer, (S)‐4‐bromomethyl‐β‐lactone, encounters steric hindrance between the bromo substituent and the side chain of the Leu278 residue, while the fast‐reacting enantiomer does not have any steric clash.  相似文献   

4.
The distribution behavior of mandelic acid (MA) enantiomers was examined in a two‐phase system containing di(2‐ethylhexyl) phosphoric acid (D2EHPA) with two tartaric acid derivatives as complex chiral selectors in n‐octanol. Factors affecting the extraction were investigated, including the structure and concentration of tartaric acid as well as the concentration of D2EHPA and D,L‐MA. The results showed that both the distribution ratio and enantioselectivity were greatly improved by using a complex chiral selector rather than using the tartaric acid derivative by itself. Finally, it was found that the formation of mixed complex chiral selectors by mixing two tartaric acid derivatives with D2EHPA can improve the capacity of enantioselective extraction.  相似文献   

5.
The enantioselective extraction of hydrophobic oxybutynin (OBN) enantiomers by hydrophilic β‐cyclodextrin (β‐CD) derivatives was studied. The efficiency of extraction depends strongly on a number of process variables such as types of organic solvents and β‐CD derivatives, concentration of selector, pH, and temperature. The experimental data were described by a reactive extraction model with a homogeneous aqueous phase reaction of R,S‐OBN with β‐CD. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic OBN were 4.96 × 10?3 and 9.52, respectively. The equilibrium constants of the complexation reactions were 1770 and 1340 L/mol for S‐ and R‐OBN, respectively. By modeling and experiment, an optimal extraction condition with pH of 5 and HP‐β‐CD concentration of 0.1 mol/L was obtained with enantioselectivity (α) of 1.26, which was close to the theoretical maximum of 1.32 and performance factor (pfi) of 0.036. The model was verified experimentally with excellent results. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
Cloud‐point extraction (CPE) was used with lipophilic chelating agent to extract uranium(VI) from aqueous solutions. The methodology used is based on the formation of metal complexes soluble in a micellar phase of a non‐ionic surfactant, Triton X‐114. The metal ions complexes are then extracted into the surfactant‐rich phase at a temperature above the cloud‐point temperature. The influence of surfactant concentration on extraction efficiency was studied and the advantage of adding 8‐hydroxyquinoline (8HQ) as lipophilic chelating agent was evidenced. High extraction efficiency was observed, indicating the feasibility of extracting U(VI) using CPE. This study describes a four‐step process—(1) extraction, (2) thermo‐induced phase splitting, (3) back‐extraction and (4) second phase splitting—for the recovery of uranium from water. In our conditions, the extraction yield is quantitative and the concentration factor obtained is superior to 100. After stripping with a diluted nitric acid solution (pH < 1), the system can be recycled through a new four‐step cycle. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
The conversion of benzaldehyde and cyanide into mandelic acid and mandeloamide by a recombinant Escherichia coli strain which simultaneously expressed an (S)‐hydroxynitrile lyase (oxynitrilase) from cassava (Manihot esculenta) and an arylacetonitrilase from Pseudomonas fluorescens EBC191 was studied. Benzaldehyde exhibited a pronounced inhibitory effect on the nitrilase activity in concentrations ≥25 mM. Therefore, it was tested if two‐phase systems consisting of a buffered aqueous phase and the ionic liquid 1‐butyl‐1‐pyrrolidinium bis(trifluoromethanesulfonyl)imide (BMpl NTf2) or 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMim PF6) could be used for the intended biotransformation. The distribution coefficients of the substrates, intermediates and products of the reaction were determined and it was found that BMpl NTf2 and BMim PF6 were highly efficient as substrate reservoirs for benzaldehyde. The recombinant E. coli strain was active in the presence of BMpl NTf2 or BMim PF6 phases and converted benzaldehyde and cyanide into mandelic acid and mandeloamide. The two‐phase systems allowed the conversion of benzaldehyde dissolved in the ionic liquids to a concentration of 700 mM with product yields (=sum of mandelic acid and mandeloamide) of 87–100%. The cells were slightly more effective in the presence of BMpl NTf2 than in the presence of BMim PF6. In both two‐phase systems benzaldehyde and cyanide were converted into (S)‐mandeloamide and (S)‐mandelic acid with enantiomeric excesses ≥94%. The recombinant E. coli cells formed, in the two‐phase systems with ionic liquids and increased substrate concentrations, higher relative amounts of mandeloamide than in a purely aqueous system with lower substrate concentrations.  相似文献   

8.
The combination of Ga(OTf)3 with chiral semi‐crown ligands ( 1a – e ) generates highly effective chiral gallium Lewis acid catalysts for aqueous asymmetric aldol reactions of aromatic silyl enol ethers with aldehydes. A ligand‐acceleration effect was observed. Water is essential for obtaining high diastereoselectivity and enantioselectivity. The p‐phenyl substituent in aromatic silyl enol ether ( 2 h ) plays an important role and increases the enantioselectivity up to 95% ee. Although aliphatic silyl enol ethers provided low enantioselectivities and silylketene acetal is easily hydrolyzed in aqueous alcohol, the aldol reactions of silylketene thioacetal ( 12 ) with aldehydes in the presence of gallium‐Lewis acid catalysts give the β‐hydroxy thioester with reasonable yields and high diastereo‐ (up to 99 : 1) and enantioselectivities (up to 96% ee).  相似文献   

9.
BACKGROUND: Biocatalysts have gained increasing attention because of their inherent advantages over chemical catalysts. However, the poor operational stability has always prevented their broad application. In this study, (R)‐mandelic acid was chosen as a model compound of alpha‐hydroxy acids. The objective was to obtain a new biocatalyst with desired operational stability for the preparation of (R)‐mandelic acid as well as other optically pure alpha‐hydroxy acids of pharmaceutical importance. RESULTS: Using a two‐step screening strategy, Saccharomyces ellipsoideus GIM2.105 was selected as an effective biocatalyst with high enantioselectivity and remarkable operational stability. After 20 cycles of reuse, whole cells of S. ellipsoideus GIM2.105 maintained its activity, and no obvious decrease in conversion or enantiomeric excess (ee) was observed. Furthermore, effects of various reaction parameters, including pH, temperature, co‐substrate (type, concentration), substrate concentration and reaction time, on the bioreduction were studied. Under optimal conditions, (R)‐mandelic acid and four substituted aromatic (R)‐alpha‐hydroxy acids were prepared in high ee (95–>99%) and good conversion (>90%). CONCLUSION: The high enantioselectivity, remarkable operational stability and mild reaction conditions showed S. ellipsoideus GIM2.105 to be an economical biocatalyst with great industrial application potential for the production of optically active alpha‐hydroxy acids. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Because of low aqueous solubility and slow dissolution rate, cantharidin has a low oral bioavailability. Our research aims to prepare the inclusion complex of cantharidin and β‐cyclodextrin (β‐CD) and accomplish characterization, in vitro and in vivo evaluation. CA‐β‐CD inclusion complex was prepared by saturated solution method. The CA was demonstrated by HPLC in vitro experiment and by GC‐MS in vivo experiment. CA‐β‐CD inclusion complex was characterized by differential scanning calorimetry (DSC), X‐ray diffractometry (XRD), and nuclear magnetic resonance (NMR). Through complexation with β‐CD, the solubility of CA in neutral aqueous solution was improved significantly. CA‐β‐CD inclusion complex also shows a significantly improved dissolution rate in comparison with free CA. Comparison of the pharmacokinetics between CA‐β‐CD inclusion complex and free CA was performed in rats. The in vivo results show that CA‐β‐CD inclusion complex has earlier tmax, higher Cmax, and higher bioavailability than free CA after oral dosing. By comparing the AUC0–t of CA and CA‐β‐CD inclusion complex, the relative bioavailability of CA‐β‐CD inclusion complex to free CA was 506.3%, which highlighted the evidence of significantly improved bioavailability of formulation of CA with β‐CD. Thus, this β‐CD‐based drug delivery system should be an effective oral dosage form to improve oral bioavailability of CA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
BACKGROUND: Endocrine disruptors in the aquatic environment and their potential adverse effects are currently issues of concern. One of these endocrine disruptors is 2,2‐bis(4‐hydroxy‐3‐methylphenyl)propane (BPP). In this work the molecular recognition interaction of BPP with β‐cyclodextrin (β‐CD) was studied using IR spectroscopy and steady state fluorescence spectroscopy, and the photocatalytic degradation behaviour of BPP based on molecular recognition interaction was investigated in a TiO2/UV–visible (λmax = 365 nm) system. This might provide a new method for the treatment of some organic pollutants in wastewater. RESULTS: β‐CD reacts with BPP to form a 1:1 inclusion complex, the formation constant of which is 4.94 × 103 L mol?1. The photodegradation rate constant of BPP after molecular recognition by β‐CD showed a 1.42‐fold increase in the TiO2/UV–visible (λmax = 365 nm) system. The photodegradation of BPP depended on the concentration of β‐CD, the pH value, the gaseous medium and the initial concentration of BPP. The photodegradation efficiency of BPP with molecular recognition was higher than that without molecular recognition. After 100 min of irradiation the mineralisation efficiency of BPP after molecular recognition by β‐CD reached 94.8%, whereas the mineralisation efficiency of BPP before molecular recognition by β‐CD was only 40.6%. CONCLUSION: The photocatalytic degradation of BPP after molecular recognition by β‐CD can be enhanced in the TiO2/UV‐visible (λmax = 365 nm) system. This enhancement is dependent on the enhancement of the adsorption of BPP, the moderate inclusion depth of BPP in the β‐CD cavity and the increase in the frontier electron density of BPP after molecular recognition. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
A novel ion‐imprinted polymer (IIP) using (6‐O‐butene diacid ester)‐β‐cyclodextrin (β‐CD‐MAH) as the functional monomer and copper ions as the template was developed for Cu2+ sensing. First, reactive β‐cyclodextrin (β‐CD) monomers with vinyl carboxylic acid functional groups were synthesised and were co‐polymerised with styrene via radical polymerisation. Then, the β‐CD copolymers were complexed with Cu2+ in order to obtain the IIP. The imprinting effect was realised by removing the template ions from the imprinted polymer. The structure, composition and morphology of the IIP were characterised by Fourier transform IR spectroscopy, energy‐dispersive spectroscopy and field‐emission SEM. The adsorption capacity was investigated by UV–visible spectroscopy in batch operation mode. The maximum adsorption capacity for the Cu2+ template ions was 28.91 mg g?1, and the adsorption selectivity was clearly illustrated from the increased sorption affinity towards Cu2+ ions over other competing ions. The adsorption was affected by the pH of the aqueous medium, and enhanced adsorption capacity was observed at pH 5. The prepared IIP could be used 10 times after its regeneration without significant loss of the adsorption capacity. © 2018 Society of Chemical Industry  相似文献   

13.
To enhance the affinity of 4‐vinyl pyridine to l ‐phenylalanine (l ‐Phe) and convert the imprinting process from the aqueous phase to the organic phase, an oil‐soluble amino acid ionic liquid was introduced as a template. In this study, 1‐butyl‐3‐methylimidazolium α‐aminohydrocinnamic acid salt was first applied to prepared surface molecularly imprinted polymers (MIPs) in acetonitrile for the selective recognition of l ‐Phe. Fluorescence quenching analysis of the functional monomer on the template was investigated under different conditions to study the imprinting mechanism. Several binding studies, such as the sorption kinetics, sorption thermodynamics, and solid‐phase extraction application, and the chiral resolution of racemic phenylalanine were investigated. The binding isotherms were fitted by nonlinear regression to the Freundlich model to investigate the recognition mechanism. The affinity distribution analysis revealed that polymers imprinted by ionic liquid showed higher homogeneous binding sites than those imprinted by l ‐Phe. The competition tests were conducted by a molecularly imprinting solid‐phase extraction procedure to estimate the selective separation properties of the MIPs for l ‐Phe. The target MIP was shown to be successfully for the separation of l ‐Phe from an amino acid mixture. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42485.  相似文献   

14.
Eucalyptol (Euc) is a natural monoterpene with insecticide effects. Being highly volatile and sensitive to ambient conditions, its encapsulation would enlarge its application. Euc‐loaded conventional liposomes (CL), cyclodextrin/drug inclusion complex, and drug‐in‐cyclodextrin‐in‐liposomes (DCL) are prepared to protect Euc from degradation, reduce its evaporation, and provide its controlled release. The liposomal suspension is freeze‐dried using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as cryoprotectant. The liposomes are characterized before and after freeze‐drying. The effect of Euc on the fluidity of liposomal membrane is also examined. A release study of Euc from delivery systems, in powder and reconstituted forms, is performed by multiple head extraction at 60 °C after 6 months of storage at 4 °C. CL and DCL suspensions are homogeneous, show nanometric vesicles size, spherical shape, and negative surface charge before and after freeze‐drying. Moreover, HP‐β‐CD does not affect the fluidity of liposomes. CL formulations present a weak encapsulation for Euc. The loading capacity of eucalyptol in DCL is 38 times higher than that in CL formulation. In addition, freeze‐dried DCL and HP‐β‐CD/Euc inclusion complex show a higher retention of eucalyptol than CL delivery system. Both carrier systems HP‐β‐CD/Euc and Euc‐loaded DCL decrease Euc evaporation and improve its retention. Practical Applications: Eucalyptol is a natural insecticide. It is highly volatile and poorly soluble in water. To enlarge its application, its encapsulation in three delivery systems (conventional liposomes, cyclodextrin/drug inclusion complex, combined system composed of cyclodextrin inclusion complex and liposome) is studied. In this paper it is proved that cyclodextrin/eucalyptol inclusion complex and eucalyptol‐in‐cyclodextrin‐in‐liposome are effective delivery systems for encalyptol encapsulation, retention, and release.  相似文献   

15.
A liquid‐solid extraction system based on Tween 80/phosphate was developed. Under the optimized conditions (9 wt % Tween 80, 1.6 : 1 (molar ratio) K2HPO4 : NaH2PO4, 1.25 mol/L total phosphate, pH = 7.4), α‐Lactalbumin (α‐La) and β‐Lactoglobulin (β‐Lg) were separated with recovery rates of 87.6 % (in the solid polymeric phase) and 98.2 % (in the salt aqueous phase), respectively. Under the effects of water and salt, the solid phase had the ability to form a new liquid‐solid extraction system, and 85.1 % of α‐La could be reversely extracted into the new salt aqueous phase. Following dialysis against water, proteins obtained through extraction and reverse extraction, were analyzed by polyacrylamide gel electrophoresis (PAGE) and thin‐layer scanning. The method was applied successfully to separate α‐La and β‐Lg from milk whey.  相似文献   

16.
《分离科学与技术》2012,47(9):1357-1365
The biphasic recognition chiral extraction process was developed and applied to separate amlodipine enantiomer. The chiral extraction system contained tartaric acid derivatives in the organic phase and β-cyclodextrin derivatives in the aqueous phase. The effect of extraction equilibrium time and the influence of different types of tartaric acids, types of β-cyclodextrin derivatives, organic solvents, and buffer pH were investigated. The results indicated that hydroxypropyl-β-cyclodextrin (HP-β-CD) showed a higher recognition ability toward (S)-amlodipine than (R)-amlodipine while dibenzoyl-D-tartrate demonstrated the strongest ability among tartaric acid derivatives to bind with (R)-amlodipine. The distribution ratios for (S)-amlodipine (kS) and (R)-amlodipine (kR) gave optimum values at pH 5.0 of 16.54 and 0.78, respectively. Biphasic chiral recognition extraction has great significance for preparative separation of (S)-amlodipine. It can also be used to design and apply the enantioseparation process.  相似文献   

17.
BACKGROUND: Because of its high demand for use in pharmaceutical products, cosmetics, soil remediation technologies, etc., randomly methylated β‐cyclodextrin (RM‐β‐CD) is one of the most important cyclodextrin (CD) derivatives. The aim of this present work is to use a green and commercially available approach to obtain RM‐β‐CD. Compared with other methylated CDs, RM‐β‐CD with an asymmetric molecular structure has higher water solubility. When the degree of substitution (DS) is about 1.8, the solubility tends to increase with increasing temperature and is suitable for pharmaceutical applications. RESULTS: RM‐β‐CD was synthesized using a green approach with ideal DS equal to 1.79. The one step process of β‐cyclodextrin methylation by CH3Cl instead of (CH3)2SO4 at mild temperature (80 °C) and pressure (1.60 MPa) with a good yield (78%), is convenient and environmentally friendly. The mixture of RM‐β‐CD obtained contained five compounds with various DS, from which the main compound with a DS equal to 1.8 was separated by column chromatography. The compounds were carefully characterized by infra‐red, NMR and mass spectrometry. CONCLUSIONS: The one‐step process to RM‐β‐CDs with CH3Cl is more economical, more efficient and less noxious than the usual method using (CH3)2SO4. Moreover, this approach avoids some poisonous residual materials and meets the demand for protecting the environment. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
The objective of this study was to identify a kind of molecular imprinting polymer (MIP) which was suitable for recognizing naringin (NG) in aqueous medium. Based on two crosslinkers (hexamethylene diisocyanate and epichlorohydrin) and two polymerization methods (solution polymerization and emulsion polymerization), four non‐covalent naringin‐β‐cyclodextrine (NG‐β‐CD) imprinted polymers were prepared by using β‐CD as a functional monomer and NG as a template molecule. The binding property and selectivity were evaluated by equilibrium binding experiments. These demonstrated that all the sites in the MIPs show good selective binding ability for NG from naringin dihydrochalcone, a structurally similar molecule. Of the four MIPs, rod‐like 3# MIP which was prepared by emulsion polymerization using hexamethylene diisocyanate as crosslinker exhibited the highest selectivity, its imprinting factor α being 1.53. Scatchard analysis of 3# MIP suggests that there are two classes of binding sites during the MIP's recognition of NG. Additionally, the 3# MIP could be used at least five times without any loss in sorption capacity. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
The investigation of liquid–liquid extraction of dyes is carried out by using ionic liquid—1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM][PF6])—as extraction phase. The effects of its process parameters are studied in detail, such as extraction phase ratio, pH of the aqueous phase, and concentration of dicyclohexyl‐18‐crown‐6 (DCH‐18C6) in the organic phase. Important results are obtained as follows: acid dyes can be extracted with [BMIM][PF6] quantitatively; the removal of reactive dyes is low; however, it can be greatly increased by the addition of DCH‐18C6. The pH value has a great impact on the removal of the acid dye and the reactive dye. However, it does not influence the extraction of the weak acid dye. It is found that the extraction process of acid dyes adopts the form of anion exchange and the soluble part of the ionic liquid plays an important role as counter‐ions. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
A new triphenylphosphane based on a β‐cyclodextrin skeleton (PM‐β‐CD‐OTPP) was synthesized. This ligand can be dispersed in water by using the nanoprecipitation method. Transmission electron microscopy and NMR spectroscopy showed that PM‐β‐CD‐OTPP is aggregated in water and forms a stable dispersion. Its aqueous solubility can be dramatically increased in the presence of selected water‐soluble guests by formation of inclusion complexes. Associated to a rhodium precursor, PM‐β‐CD‐OTPP is able to generate soluble rhodium species in water. In addition, NMR experiments showed that the cyclodextrin cavity remains accessible for a guest even when PM‐β‐CD‐OTPP is coordinated to rhodium. Finally, this ligand was efficient for rhodium‐catalyzed hydrogenation and hydroformylation performed in aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号