首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ω‐Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω‐hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω‐hydroxyacids. ω‐Hydroxyacids are produced by two different P450‐dependent mechanisms. The longer (30–34 carbons) ω‐hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω‐hydroxyacids found in plants and 20‐eicosatetraenoic acid (20‐HETE) by a different P450. The C16 and C18 ω‐hydroxyacids are components of polymers in plants. The long‐chain ω‐hydroxyacids are found in epidermal sphingolipids, in giant‐ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax.  相似文献   

3.
Six pure strains of obligate anaerobes capable of degrading the toxin β‐N‐oxalyl‐L ‐α, β‐diaminopropionic acid (β‐ODAP) contained in grass pea (Lathyrus sativus) have been isolated from cow rumen. The new isolates were identified as Megasphaera elsdenii (five different genotypes) and Clostridium bifermentans using 16S rDNA analysis. The β‐ODAP degrading efficiency of the isolates was evaluated by measuring the amount of β‐ODAP in the growth medium, which contained β‐ODAP as the only carbon source, before and after incubation with the microbes. The method of analysis was liquid chromatography employing bioelectrochemical detection. The biosensor is based on co‐immobilising two enzymes, glutamate oxidase (GlOx) and horseradish peroxidase (HRP), on the end of a spectrographic graphite electrode. β‐ODAP is oxidised by GlOx to form H2O2, which in turn is bioelectrocatalytically reduced by HRP through a mediated reaction using a polymeric mediator incorporating Os2 + /3+ functionalities rapidly shuttling electrons with the electrode_giving rise to the analytical signal. On the basis of this analysis system, the new isolates are capable of utilising β‐ODAP as sole carbon source to a maximum of 90–95% within 5 days with concomitant increase in cell protein. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Tea polyphenol (TP) inhibits digestive enzymes and reduces food digestibility. To explore the interaction between TP with digestive enzymes, bindings of ‐epigallocatechin‐3‐gallate (EGCG) to trypsin and α‐chymotrypsin were studied in detail using fluorescence, resonance light‐scattering, circular dichroism, fourier transform infrared spectroscopy methods and protein‐ligand docking. The binding parameters were calculated according to Stern–Volmer equation, and the thermodynamic parameters were determined by the van't Hoff equation. The results indicated that EGCG was capable of binding trypsin and α‐chymotrypsin with high affinity, resulting in a change of native conformation of these enzymes. EGCG had a greater influence on the structure of α‐chymotrypsin than trypsin. This study can be used to explain the binding interaction mechanism between TP and digestive enzymes.  相似文献   

16.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

17.
18.
19.
Abstract: Galactooligosaccharides (GOSs) are nondigestible oligosaccharides and are comprised of 2 to 20 molecules of galactose and 1 molecule of glucose. They are recognized as important prebiotics for their stimulation of the proliferation of intestinal lactic acid bacteria and bifidobacteria. Therefore, they beneficially affect the host by selectively stimulating the growth and/or activity of a limited number of gastrointestinal microbes (probiotics) that confer health benefits. Prebiotics and probiotics have only recently been recognized as contributors to human health. A GOS can be produced by a series of enzymatic reactions catalyzed by β‐galactosidase, where the glycosyl group of one or more D‐galactosyl units is transferred onto the D‐galactose moiety of lactose, in a process known as transgalactosylation. Microbes can be used as a source for the β‐galactosidase enzyme or as agents to produce GOS molecules. Commercial β‐galactosidase enzymes also do have a great potential for their use in GOS synthesis. These transgalactosyl reactions, which could find useful application in the dairy as well as the larger food industry, have not been fully exploited. A better understanding of the enzyme reaction as well as improved analytical techniques for GOS measurements are important in achieving this worthwhile objective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号