首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Metoprolol is a beta‐blocker that can be found in urban wastewaters and which is not removed efficiently by conventional wastewater treatments. In this work, the removal of this pollutant by conductive diamond electrochemical oxidation (CDEO) is studied. RESULTS: CDEO is able to degrade Metoprolol tartrate down to the 10 ppb level (detection limit of the technique used) with a current charge requirement that increases with increase in the initial concentration of pollutant, although it is many times greater than the stoichiometric current charge required. CDEO also removed very efficiently the reaction intermediates. In terms of TOC the depletion follows a first‐order kinetic, but the kinetic constant of Metoprolol decreases with concentration. NaCl increases significantly Metoprolol degradation rate, but it barely affects the TOC removal rate. CONCLUSIONS: CDEO can be used to remove Metoprolol from wastewaters, independently of the initial concentration of compound. Several reaction intermediates are formed during the electrolyses although their concentrations are very low and negligible compared with that of Metoprolol. The removal rate (in terms of TOC) does not depend on the nature of the electrolyte used. The process is under mass transfer control for the complete range of concentrations studied. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Removal of triclosan by conductive‐diamond electrochemical oxidation (CDEO) and sonoelectrochemical oxidation (CDSEO), either in methanol/water or methanol solutions is studied in the range of concentration 0.1 to 100 mg dm?3. Effects of current density and of electrolyte on the process efficiency are assessed. RESULTS: Concentration of triclosan can be removed below the detection limit of HPLC. In methanol/water solutions, there are two stages: a rapid decrease in the concentration and a less efficient process in which the rate is slower. In methanol solutions, experimental results clearly fit first‐order kinetics. Mediated oxidation plays a significant role. Electrolyses in sulphate media are more efficient than in chloride media and the second low‐rate stage in methanol/water solution appears for higher triclosan removal. The main intermediates are catechol, chlorohydroquinone, 4‐chlorocatechol, acetic acid and dichloroacetic acid. They were only detected during the electrolysis of highly concentrated solution, suggesting a very energetic oxidation. CONCLUSIONS: CDEO and CDSEO are very efficient for the removal of triclosan. CDSEO improves mass‐transfer processes and gives a more efficient removal at lower concentrations. The removal of methanol is improved significantly, in spite of its concentration being well over the limiting value for mass transport control. The reaction sequence for triclosan mineralization is consistent with literature reports. © 2012 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Progesterone is considered an endocrine disruptor chemical. It can be found in industrial discharges, municipal wastewaters, and, in some instances, even in treated effluents at the level of ng dm?3. RESULTS: Conductive diamond electrolysis can be used to remove progesterone from aqueous solutions. Increases in current density lead to less efficient processes, indicating mass transfer control of the process rate. Occurrence of chlorides in the electrolytic media favors the depletion of progesterone compared with sulphates, although it does not affect the mineralization rate. Independently of the solubilizing agent used, the process behaves similarly during a first stage of the electrolysis (at the four ranges of pollutant concentration studied). However, in a second stage, the rate changes abruptly due to reduced action of hydroxyl radicals in methanol media. CONCLUSIONS: Progesterone can be removed efficiently by conductive diamond electrolysis from aqueous solutions within the range of initial concentrations 10?2 to 102 mg dm?3. The process efficiency increases with the current density. Removal rate does not depend on the nature of the electrolyte, but this parameter affects the intermediates formed during the experiment. When pure methanol is used as solubilizing agent, only direct electro‐oxidation takes place. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
Results are reported of the electrochemical oxidation of sodium dodecylbenzenesulfonate (SDBS), a common surfactant, at boron-doped diamond anodes. The measured critical micelle concentration (CMC) for SDBS in water at 24 °C was almost 150 mg dm−3, but this decreased to almost 30 mg dm−3 in 0.1 M sodium sulfate. Cyclic voltammetry of a boron doped diamond (BDD) electrode in aqueous SDBS solutions exhibited oxidation current densities at very positive potentials; however, solutions of monomers at concentrations <CMC gave rise to higher current densities than in higher concentration solutions that formed micelles. Galvanostatic electrolyses, with samples analyzed for Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), were performed in an electrolytic flow cell without separator, operating in batch recycle mode, using solutions containing SDBS at initial concentrations of 25 and 250 ppm. SDBS in basic media (pH = 12) exhibited lower TOC removal rates than in acidic or neutral solutions, due to concurrent oxidation of dissolved carbonates at potentials less positive than required for water oxidation, as evident in cyclic voltammograms. Decreasing the [electrolyte]/[surfactant] ratio from 200 to 10 increased TOC removal rates. For solutions containing monomers, TOC removal rates also increased with flow rate in the second part of the electrolysis, corresponding to reaction of smaller, fragmented organic compounds. When COD removal from a solution containing SDBS micelles was mass transport controlled, current efficiencies were constant at ca. 50%, due to dimerisation of hydroxyl radical to H2O2 and its oxidation to dioxygen.  相似文献   

5.
Plant peroxidases (EC 1.11.1.7) catalyze the oxidation of phenolic pollutants in the presence of hydrogen peroxide. In the present study, extracellular peroxidases from Vaccinium myrtillus cell suspension cultures (VMP) were evaluated for their ability to polymerize 2,4,6‐trichlorophenol (TCP), a ubiquitous environmental contaminant. The effect of pH, temperature, reaction time, enzyme amount and initial pollutant concentration on the treatment efficiency was investigated in order to optimize the reaction conditions for TCP removal. An appreciable removal efficiency and a partial dehalogenation of TCP was observed over a wide range of initial pollutant concentrations (0.1–20 mmol dm?3) and reaction conditions suggesting that VMP could be useful for potential decontamination applications. The use of polyethylene glycol in the reaction mixture allowed a reduction of the catalyst requirements needed to obtain well defined extents of TCP removal. © 2001 Society of Chemical Industry  相似文献   

6.
A titanium dioxide/hydroxyapatite/ultraviolet (TiO2/HAP/UV-A) system was used to remove sulfamethoxazole (SMX) from water in a second-order response surface methodology (RSM) experiment with a three-level Box-Behnken design (BBD) for optimization. The effects of both the primary and secondary interaction effects of three photocatalytic reaction variables were examined: the concentration of SMX (X1), dose of TiO2/HAP composite (X2), and UV intensity (X3). The UV intensity and TiO2/HAP dose significantly influence the SMX and total organic carbon (TOC) removal (p<0.001). However, the SMX and TOC removal are enhanced with increasing TiO2/HAP dose up to certain levels, and further increases in the TiO2/HAP dose result in adverse effects due to hydroxyl radical scavenging at higher catalyst concentrations. Complete removal of SMX was achieved upon UV-A irradiation for 180min. Under optimal conditions, 51.2% of the TOC was removed, indicating the formation of intermediate products during SMX degradation. The optimal ratio of SMX (mg L?1) to TiO2/HAP (g L?1) to UV (W/L) was 5.4145 mg L?1 to 1.4351 g L?1 to 18W for both SMX and TOC removal. By comparison with actual applications, the experimental results were found to be in good agreement with the model’s predictions, with mean results for SMX and TOC removal of 99.89% and 51.01%, respectively.  相似文献   

7.
Wastewaters generated by a factory processing marine products are characterized by high concentrations of organic compounds and salt constituents (>30 g dm?3). Biological treatment of these saline wastewaters in conventional systems usually results in low chemical oxygen demand (COD) removal efficiency, because of the plasmolysis of the organisms. In order to overcome this problem a specific flora was adapted to the wastewater from the fish‐processing industry by a gradual increase in salt concentrations. Biological treatment of this effluent was then studied in a continuous fixed biofilm reactor. Experiments were conducted at different organic loading rates (OLR), varying from 250 to 1000 mg COD dm?3 day?1. Under low OLR (250 mg COD dm?3 day?1), COD and total organic carbon (TOC) removal efficiencies were 92.5 and 95.4%, respectively. Thereafter, fluctuations in COD and TOC were observed during the experiment, provoked by the progressive increase of OLR and the nature of the wastewater introduced. High COD (87%) and TOC (99%) removal efficiencies were obtained at 1000 mg COD dm?3 day?1. © 2002 Society of Chemical Industry  相似文献   

8.
The removal of the anthraquinone dye Alizarin Red S (AR) has been investigated by electro-Fenton process using a commercial graphite-felt to electrogenerate in situ hydrogen peroxide and regenerate ferrous ions as catalyst. The effect of operating conditions such as applied current, catalyst concentration, and initial dye content on AR degradation has been studied. AR decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by UV–Vis analysis and TOC measurements. The experimental results showed that AR was completely removed by the reaction with OH radicals generated from electrochemically assisted Fenton's reaction, and the decay kinetic always follows a pseudo-first-order reaction. Applying a current of 300 mA and with catalyst concentration of 0.2 mM Fe2+, 95% of the initial TOC was removed in 210 min of electrolysis, meaning the almost complete mineralization of the organic content of the treated solution.  相似文献   

9.
BACKGROUND: Chloronitrobenzenes (ClNBs) are a family of toxic and bio‐resistant organic compounds. Ozone treatment is specifically suitable for partial or complete oxidation of non‐biodegradable components. However, few studies on the decomposition of ClNBs by ozone are available, and kinetics and mechanisms of ClNBs ozonation have not been thoroughly investigated. The kinetics and mechanism of ozonation degradation of ClNBs in aqueous solution were investigated, and the contribution of both molecular ozone and hydroxyl radicals was also evaluated. RESULTS: The results demonstrated that the decomposition of ClNBs was a pseudo‐first‐order reaction with respect to the pollutant concentration and the overall rate constant increased with an increase in pH. It declined, however, with an increase in pollutant and radical scavenger concentration. Furthermore, TOC removal rate was significantly lower than that of ClNBs, but the same order o‐ClNB < m‐ClNB < p‐ClNB was followed. Ozonation could not reduce TOC significantly, p‐chlorophenol, p‐nitrophenol, 2‐chloro‐5‐nitrophenol and 5‐chloro‐2‐nitrophenol were detected as primary degradation intermediates in ozonation of p‐ClNB. Rate constants of the direct reaction between ozone and ClNBs at 25 °C had been found to be lower than 1 M?1S?1. More than 95% of ClNBs removal was due to hydroxyl radical oxidation at pH ≥ 7. CONCLUSION: Advanced oxidation processes may be the preferred choice for the elimination of ClNBs from the environment. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
Turnip roots, which are readily available in Mexico, are a good source of peroxidase, and because of their kinetic and biochemical properties have a high potential as an economic alternative to horseradish peroxidase (HRP). The efficiency of using turnip peroxidase (TP) to remove several different phenolic compounds as water‐insoluble polymers from synthetic wastewater was investigated. The phenol derivatives studied included phenol, 2‐chlorophenol, 3‐chlorophenol, o‐cresol, m‐cresol, 2,4‐dichlorophenol and bisphenol‐A. The effect of pH, substrate concentration, amount of enzyme activity, reaction time and added polyethylene glycol (PEG) was investigated in order to optimize reaction conditions. A removal efficiency ≥85% was achieved for 0.5 mmol dm?3 phenol derivatives at pH values between 4 and 8, after a contact time of 3 h at 25 °C with 1.28 U dm?3 of TP and 0.8 mmol dm?3 H2O2. Addition of PEG (100–200 mg dm?3) significantly reduced the reaction time required (to 10 min) to obtain >95% removal efficiency and up to 230% increase in remaining TP activity. A relatively low enzyme activity (0.228 U dm?3) was required to remove >95% of three phenolic solutions in the presence of 100–200 mg dm?3 PEG. TP showed efficient and fast removal of aromatic compounds from synthetic wastewaters in the presence of hydrogen peroxide and PEG. These results demonstrate that TP has good potential for the treatment of phenolic‐contaminated solutions. © 2002 Society of Chemical Industry  相似文献   

11.
The degradation of high concentrations of phenol (1g/dm?3) in aqueous media at high temperatures (100–190 °C) and pressures (2.0 MPa) has been studied by catalytic wet air oxidation in a trickle‐bed reactor. The effect of reaction temperature, weight hourly space velocity (WHSV) and hydrogen peroxide concentration on phenol concentration, total organic carbon (TOC) and chemical oxygen demand (COD) conversion by using a commercial copper catalyst has been investigated. At 150 °C, TOC removal increased by 28% with the WHSV of 62.5 h?1. The addition of hydrogen peroxide as a free radical promoter significantly enhanced the depletion rate of phenol. A kinetic study has been carried out leading to the determination of the kinetic constants for the removal of TOC. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
Electrochemical methods are being used increasingly as an alternative treatment process for the remediation of textile wastewaters. This study focused mainly on the colour removal and chemical oxygen demand (COD) reduction of vat textile dye (CI Vat Blue 1: indigo) from its aqueous solution by electrochemical oxidation. The process was carried out in a batch‐type divided electrolytic cell under constant potential using a Pt cage as anode and Pt foil as cathode. Operating variables such as supporting electrolyte, pH, ultrasonification and treatment time were investigated to probe their effects on the efficiency of the electrochemical treatment. Colour removal was estimated by monitoring the disappearance of the absorbance peak at 681.5 nm. It was found that in acidic conditions the electrolysis was more efficient. At pH 1, an NaCl concentration of 0.24 mol dm?3, a dyeing solution concentration of 0.1% (w/v) and a period of 90 min of electrolysis, there was almost 100% colour removal and 60% reduction in COD. Voltammetric and IR investigations demonstrated that partial degradation of dye was achieved. The experimental results indicate that this electrochemical method could effectively be used as a pretreatment stage before conventional treatment. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
《分离科学与技术》2012,47(7):1008-1018
The objective of the present study is to assess the efficiency of electro-coagulation treatment of pistachio processing industry wastewaters (PPIW) using an aluminum plate electrode. The effect of some of the parameters was examined on the removal of chemical oxygen demand (COD), total organic carbon (TOC), and total phenols (TP) removal efficiency. The treatment was carried out in a batch system. The influences of current density (from 1 to 6 mA cm?2), initial pH of wastewater (from 2 to 8), constant pH of wastewater (from 3 to 7), stirring speed (from 100 to 500 rpm), and supporting electrolyte concentration (from 10 to 50 mg L?1 NaCl) on removal efficiency were investigated to determine the best experimental conditions. The evaluation of the physico-chemical parameters during the treatment by electrocoagulation showed that the best removal efficiency was obtained under the conditions of 180 min electrolysis time, wastewater with constant pH of 6, and 6 – mA cm?2 current density. Under such experimental conditions, COD, TOC, and TP removal efficiency were found to be 60.1%, 50.2%, and 77.3%, respectively, while energy consumption was 39.6 kW-h m?3. The results of the study show that the electrocoagulation can be applied to PPIW pre-treatment.  相似文献   

14.
Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.  相似文献   

15.
BACKGROUND: TiO2 heterogeneous photocatalysis should be optimized before application for the removal of pollutants in treated wastewaters. The response surface methodology (RSM) and artificial neural networks (ANNs) were applied to model and optimize the photocatalytic degradation of total phenolic (TPh) compounds in real secondary and tertiary treated municipal wastewaters. RESULTS: RSM was developed by considering a central composite design (CCD) with three input variables, i.e. TiO2 mass, initial concentration of TPh and irradiation intensity. At the same time a feed‐forward multilayered perceptron ANN trained using back propagation algorithms was used and compared with RSM. Under the optimum conditions established in experiments ([TPh]0 = 3 mg L?1; [TiO2] = 300 mg L?1; I = 600 W m?2) the degradation for both TPh and total organic carbon (TOC) followed pseudo‐first‐order kinetic model. Complete degradation of TPh took place in 180 min and reduction of TOC reached 80%. A significant abatement of the overall toxicity was accomplished as revealed by Microtox bioassay. CONCLUSIONS: It was found that the variables considered have important effects on TPh removal efficiency. The results demonstrated that the use of experimental design strategy is indispensable for successful investigation and adequate modeling of the process and that ANNs gave better modelling capability than RSM. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
The possibility of zinc removal, a common toxic metal, from simulated liquid effluents by the application of a novel treatment method, termed galvanochemical, was investigated. The galvanochemical process is considered as a simple, economic, friendly to the environment, method, which does not create harmful end‐products. Synthetic wastewaters were examined, these contained concentrations of zinc commonly found in real wastewaters from small‐to‐medium size industrial units, such as metal‐plating or metal‐treatment plants. These liquid wastes pose an important environmental problem, due to the content of heavy metals. The optimization of the main operating parameters was the objective of the study. The galvanic pair scrap ratio iron:coke was used for these investigations. It was found that the use of the galvanic pair mixture of 80 g dm?3 (weight per solution volume ratio), agitated at 160 rpm for 5 h, removed more than 90% of zinc from the initial solution, containing initially 50 mg dm?3 of zinc. The scanning electron microscopy/energy disperse spectrometry (SEM/EDS) analysis performed on the products showed that zinc was adsorbed onto the coke to a small extent and that the zinc removal was mainly based on the adsorption of zinc onto the surface of active iron oxides formed as a result of galvanochemical reactions. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Electrochemical oxidation of phenol using a Ti/TiO2‐RuO2‐IrO2 anode in the presence of chloride as the supporting electrolyte was investigated. The experiments were performed in an undivided batch reactor. Preliminary investigations showed that only a small fraction of phenol was oxidized by direct electrolysis, while complete degradation of phenol was achieved by indirect electrochemical oxidation using chloride as a supporting electrolyte. The effect of operating parameters such as initial pH, supporting electrolyte concentration, phenol concentration, and charge input was studied using Box‐Behnken second order composite experimental design. The effect of current density on COD removal was studied separately. TOC removal and AOX formation were studied for selected conditions. It was found that the formation of chlorinated organic compounds was pronounced at the beginning of electrolysis, but it was reduced to lower levels by extended electrolysis.  相似文献   

18.
The heterogeneous catalytic wet peroxide oxidation (CWPO), involving total oxidation of organic compounds to CO2 and H2O is a possible path for the treatment of toxic and bio‐refractory wastewater streams. The aim of this work was to synthesize and characterize three Cu/ZSM5 catalysts prepared by direct hydrothermal synthesis. The mass ratio of the active metal component in the zeolite ranged from 1.62–3.24 wt %. These materials were tested for CWPO of aqueous phenol in a stainless steel Parr reactor, in batch operation under mild conditions (at atmospheric pressure and a temperature of 353 K). The catalyst weight was 0.1 g dm–3 and the initial concentration of phenol and hydrogen peroxide were 0.01 mol dm–3 and 0.1 mol dm–3, respectively. The catalysts were characterized by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), AAS and ICP‐MS. Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC) conversion, hydrogen peroxide decomposition, by‐product distribution and the degree of copper leached into the aqueous solution. The experimental results indicated that within 180 min, these catalysts facilitated almost complete elimination of phenol and a significant removal of chemical oxygen demand, without significant leaching of Cu ions from the zeolite. The Cu/ZSM5‐DHS3 catalyst with the highest copper loading was proven to be the best candidate. The useful fraction of hydrogen peroxide that contributed to the removal of the organic compounds quantified in terms of selectivity, S, indicated that the CWPO selectivity was always less than 100 %, which meant that there was some self‐degradation of oxidant. It was also shown that oxidation of phenol took place on the catalyst surface via a heterogeneous mechanism, and that the contribution of any homogeneous reaction mechanism was not significant.  相似文献   

19.
This study addresses the removal of humic acid (HA) dissolved in an aqueous medium by a photoelectrocatalytic process. UV254 removal and the degradation of color (Vis400) followed pseudo‐first order kinetics. Rate constants were 1.1 × 10?1 min?1, 8.3 × 10?2 min?1 and 2.49 × 10?2 min?1 (R2 > 0.97) for UV254 degradation and 1.7 × 10?1 min?1, 6.5 × 10?2 min?1 and 2.0 × 10?2 min?1 for color removal from 5 mg dm?3, 10 mg dm?3 and 25 mg dm?3 HA respectively. Following a 2 h irradiation time, 96% of the color, 98% of the humic acid and 85% of the total organic carbon (TOC) was removed from an initial 25 mg dm?3 HA solution in the photoanode cell. Photocatalytic removal on the same photoanode was also studied in order to compare the two methods of degradation. Results showed that the photoelectrocatalytic method was much more effective than the photocatalytic method especially at high pH values and with respect to UV254 removal. The effect of other important reaction variables, eg pH, external potential and electrolyte concentration, on the photoelectrocatalytic HA degradation was also studied. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Sulfamethoxazole (SMX), one pharmaceutical compound, has been treated in aqueous solutions with catalysts (copper and cobalt type perovskites and cobalt–alumina) and promoters (activated carbons). Hydrogen peroxide and saturated carboxylic acids were identified as intermediates. The effects of adsorption and pH have been investigated. Removal of the starting SMX accomplished with ozone alone is a fast process but catalytic or promoted ozonation is needed to significantly reduce the resulting organic carbon. SMX is, thus, mainly removed through direct ozone reaction while hydroxyl radical oxidation is the mechanism of removal the remaining TOC. The kinetics of the process has also been investigated. Perovskite catalytic ozonation resulted to be a chemical control process and apparent rate constants for homogeneous and heterogeneous ozonation were determined. For activated carbon ozonation, external diffusion of ozone to solid particles controlled the process rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号