首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用厌氧/好氧和厌氧/缺氧两阶段方法培养反硝化聚磷菌,研究了第一阶段系统的除磷性能。结果表明,稳定运行的强化生物除磷系统,具有良好的除磷性能,出水磷的质量浓度小于0.5 mg/L,除磷率大于93%。通过厌氧/好氧交替方式运行,反硝化聚磷菌占聚磷菌的比例约为21.2%。缺氧段硝酸盐的消耗量与磷的摄取量成线性关系,缺氧吸磷速率约为好氧吸磷速率的49.3%。  相似文献   

2.
厌氧/缺氧SBR反硝化除磷过程的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
Removal of denitrifying phosphorus was verified in a laboratory anaerobic/anoxic sequencing batch reactor (A/A SBR). The results obtained demonstrated that the anaerobic/anoxic strategy can enrich the growth of denitrifying phosphorus removing bacteria (DPB) and take up phosphate under anoxic condition by using nitrate as the electron acceptor. The phosphorus removal efficiency was higher than 90% and the effluent phosphate concentration was lower than 1mg·L^-1 after the A/A SBR was operated in a steady-state. When the chemical oxygen demand(COD) of influent was lower than 180mg·L^-1, the more COD in the influent was, the higher efficiency of phosphorus removal could be attained under anoxic condition. However, simultaneous presence of carbon and nitrate would be detrimental to denitrifying phosphorus removal. Result of influence of sludge retention time (SRT) on denitrifying phosphorus removal suggested that the decrease of SRT caused a washout of DPB and consequently the enhanced biological phosphorus removal decreased with 8 days SRT. When the SRT was restored to 16 days, however, the efficiency of phosphorus removal was higher than 90%.  相似文献   

3.
城市污水自养脱氮系统中有机物与磷的回收   总被引:2,自引:0,他引:2       下载免费PDF全文
厌氧氨氧化的发现使开发低能耗城市污水处理技术成为可能,可通过生物吸附实现污水能源与资源的回收。强化除磷系统污泥龄(SRT)仅为2 d,系统抗冲击性强,污泥沉降性良好,污泥体积指数(SVI)低于50,可为自养脱氮系统提供稳定的进水,但系统污泥碳含量仅为37%。将反应器内好氧水力停留时间(HRT)降至 40 min后,实现有机物去除序批式反应器(SBR)的稳定运行,厌氧段COD去除率占总COD去除率的93.8%,这表明系统对有机物的去除主要为生物吸附作用,同时污泥碳含量提升至48%。由于异养菌对有机物的消耗利用与除磷菌的吸磷过程同时进行,若试验废水C/P比较低,可降低系统水力停留时间、提升碳的回收率并辅助少量的化学除磷手段,对系统厌氧搅拌时间、曝气时间及污泥龄进行优化,从而实现C与P的高效回收。  相似文献   

4.
为了提高污水脱氮除磷的效率,研究采用序批式反应器(SBR工艺)厌氧、好氧和缺氧(AOA)的运行方式富集反硝化聚磷菌(DPB),实现同步脱氮除磷。结果表明:在好氧段投加甲醇作为碳源(25—40 mg/L)可有效抑制好氧吸磷,对硝化反应影响较小,能够在缺氧段实现同时反硝化脱氮除磷。SBR反应器稳定运行10个月,当进水NH4+-N、PO43--P分别为30,15 mg/L时,总氮(TN)和PO43--P的平均去除率分别为82.5%和92.1%。聚磷菌能够利用硝酸盐作为电子受体,DPB占总聚磷菌的比例达到44.8%。与A2O运行方式相比,AOA运行方式更有利于实现DPB的富集。  相似文献   

5.
Laboratory scale experiments were conducted to study the deterioration of enhanced biological phosphorus removal (EBPR) due to influent ammonium concentration, and to compare the performance of two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). Both in SBR and SBBR, the total nitrogen removal efficiency decreased from 100% to 53% and from 87.5% to 54.4%, respectively, with the increase of influent ammonium concentration from 20 mg/l to 80 mg/l. When the influent ammonium concentration was as low as 20 mg/l (C: N: P=200: 20: 15), denitrifying glycogen-accumulating organisms (DGAOs) were successfully grown and activated by using glucose as a sole carbon source in a lab-scale anaerobic-oxic-anoxic (A2O) SBR. In the SBR, due to the effect of incomplete denitrification and pH drop, the nitrogen and phosphorus removal efficiency decreased from 77% to 33.3% when the influent ammonium concentration increased from 20 mg/l to 80 mg/l. However, in the SBBR, simultaneous nitrification/denitrification (SND) occurred, and the nitrification rate in the aerobic phase did not change remarkably in spite of the increase in influent ammonium concentration. Phosphorus removal was not affected by the increase of influent ammonium concentration.  相似文献   

6.
A novel system coupling an up-flow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) was introduced to achieve advanced removal of organic and nitrogen from ammonium-rich landfill leachate. UASB could remove 88.1%of the influent COD at a volumetric loading rate of 6.8 kg COD·m?3·d?1. Nitritation–denitritation was responsible for removing 99.8%of NH4+-N and 25%of total nitrogen in the SBR under alternating aerobic/anoxic modes. Simultaneous denitritation and methanogenesis in the UASB enhanced COD and TN removal, and replenished alkalinity consumed in nitritation. For the activated sludge of SBR, ammonia oxidizing bacteria were preponderant in nitrifying population, indicated by fluorescence in situ hybridization (FISH) anal-ysis. The Monod equation is appropriate to describe the kinetic behavior of heterotrophic denitrifying bacteria, with its kinetic parameters determined from batch experiments.  相似文献   

7.
The objective of this study was to develop an integrated process for simultaneous removal of carbon, nitrogen and phosphorus from industrial wastewaters. The process consisted of a-two step anaerobic digestion reactor, for carbon removal, coupled with a sequencing batch reactor (SBR) for nutrient removal. In the proposed process, carbon is eliminated into biogas by anaerobic digestion: acidogenesis and methanogenesis. The volatile fatty acids (VFA) produced during the first step of anaerobic digestion can be used as electron donors for both dephosphatation and denitrification. In the third reactor (SBR) dephosphatation and nitrification are induced through the application of an anaerobic–aerobic cycle. This paper describes the first trials and experiments on the SBR and a period of 210 days during which the SBR was connected to the acidogenic and methanogenic reactors. It was shown that nitrification of ammonia took place in the SBR reactor, during the aerobic phase. Furthermore, denitrification and VFA production were achieved together in the acidogenic reactor, when the efflux of nitrates from the SBR reactor was added to the first reactor influx. The proposed process was fed with a synthetic industrial wastewater, the composition of which was: total organic carbon (TOC)=2200 mg dm−3, total Kjeldahl nitrogen (TKN)=86 mg dm−3, phosphorus under phosphate form (P-PO4)=20 mg dm−3. In these conditions, removals of carbon, nitrogen and phosphorus were 98%, 78% and 95% respectively. The results show that the combination of the two-step anaerobic digestion reactor and an SBR reactor is effective for simultaneous carbon, nitrogen and phosphorus removal. Reactor arrangements enabled zones of bacterial populations to exist. Complete denitrification occurred in the acidogenic reactor and hence the anaerobic activity was not reduced or inhibited by the presence of nitrate, thus allowing high TOC removal. Stable phosphorus release and phosphorus uptake took place in the SBR after coupling of the three reactors. A fast-settling compact sludge was generated in the SBR with the operational conditions applied, thus giving good separation of supernatant fluid. The benefits from this process are the saving of (i) an external carbon source for denitrification and phosphorus removal, (ii) a reactor for the denitrification step. © 1998 Society of Chemical Industry  相似文献   

8.
混合液回流比对A/A/O工艺反硝化除磷的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
徐伟锋  顾国维  张芳 《化工学报》2007,58(10):2619-2623
以生活污水培养驯化污泥的小试规模A/A/O工艺为研究对象,进行了混合液回流比为100%、200%和300%时对反硝化除磷的影响研究,并利用厌氧/缺氧批式试验方法对污泥特性进行单独考察。结果表明,随着混合液回流比的增大,缺氧除磷在系统除磷所起的作用、反硝化聚磷菌缺氧利用单位聚羟基链烷酸(PHAs)的吸磷量和反硝化数量出现先升高后下降,厌氧合成单位PHAs的释磷量和好氧利用单位PHAs的吸磷量并没有受到影响,以200%时反硝化除磷和系统脱氮除磷效果为最好,过高或过低NO3-N浓度均会影响反硝化聚磷菌的缺氧吸磷速率和PHAs降解速率,但并没有影响其本身所固有的特性。  相似文献   

9.
建立了A2/O-MABR耦合的中试系统,在不改变污水处理厂原有A2/O工艺以及不外加碳源的条件下,利用MABR丰富的微生物群落强化碳和氮的去除。该系统在最适宜参数下运行,COD、NH4+-N和TN的出水水质满足市政污水处理厂一级A排放标准。微生物分析表明MABR生物膜上富集了丰富的脱氮功能菌群,例如Proteobacteria和Bacteroidetes等常规反硝化菌群,以及Thauera和Paracoccus等好氧反硝化菌群。MABR生物膜上丰富的脱氮功能菌群强化了系统对TN的去除。实验结果表明MABR在市政污水处理厂提标改造和强化脱氮方面拥有很大的应用潜力。  相似文献   

10.
AOA-SBR工艺用于城市污水同步脱氮除磷   总被引:1,自引:0,他引:1  
侯金良  康勇  高永刚 《水处理技术》2007,33(7):78-81,94
以城市污水为研究对象,考察了不同COD/N/P对厌氧/好氧/兼氧(AOA).SBR工艺脱氮除磷效果的影响。经过3个月稳定运行,当COD:N:P-800:24:11时,AOA.SBR工艺对污水中有机物、氨氮和磷的去除率分别为100%、84%和93%。实验通过提高有机物浓度削弱聚磷菌(PAOs)与聚糖菌(GAOs)竞争底物的能力,抑制了PAOs好氧放磷速率。当COD=800mg/L时,GAOs和PAOs厌氧乙酸摄取量之比为l:9。此外,实验采用兼氧/好氧吸磷速率比,对反硝化聚磷菌数量(DNPAOs)进行估算,结果表明AOA-SBR工艺比值明显高于A20和AO工艺。因此,通过调节进水有机物浓度,可使DNPAOs在AOA-SBR同步脱氮除磷过程中发挥重要作用。  相似文献   

11.
超滤处理豆腐废水的膜污染及清洗   总被引:1,自引:0,他引:1  
采用中空纤维膜超滤豆腐废水,提取大豆低聚糖,对膜污染及其清洗进行了研究。探讨了不同清洗剂和不同清洗方法对膜通量的恢复效果;对清洗温度及其压力进行了优化;清洗后膜通量恢复率可达90%以上。  相似文献   

12.
在SBR系统内,研究了聚磷菌分别利用氧、硝酸盐及既利用氧又利用硝酸盐条件下的聚磷特性。试验表明:聚磷菌所利用的电子受体是以其存在的顺序而依次发生的,聚磷菌利用硝酸盐代替氧为电子受体可以实现反硝化聚磷,反硝化聚磷是稳定的代谢行为。在生物除磷系统中至少存在三类聚磷菌。  相似文献   

13.
A pilot-scale modified carbon source division anaerobic anoxic oxic (AAO) process with pre-concentration of returned activated sludge (RAS) was proposed in this study for the enhanced biological nutrient removal (BNR) of municipal wastewater with limited carbon source. The influent carbon source was fed in step while a novel RAS pre-concentration tank was adopted to improve BNR efficiency, and the effects of an influent carbon source distribution ratio and a RAS pre-concentration ratio were investigated. The results show that the removal efficiency of TN is mainly influenced by the carbon source distribution ratio while the TP removal relies on the RAS pre-concentration ratio. The optimum carbon source distribution ratio and RAS pre-concentration ratio are 60%and 50%, respectively, with an inner recycling ratio of 100%under the optimum steady operation of pilot test, reaching an average effluent TN concentration of 9.8 mg·L?1 with a removal efficiency of 63%and an average TP removal efficiency of 94%. The mechanism of nutrient removal is discussed and the kinetics is analyzed. The results reveal that the optimal carbon source distribution ratio provides sufficient denitrifying carbon source to each anoxic phase, reducing nitrate accumulation while the RAS pre-concentration ratio improves the condition of anaerobic zone to ensure the phosphorus release due to less nitrate in the returned sludge. Therefore, nitrifying bacteria, denitrifying bacteria and phosphorus accumulation organisms play an important role under the optimum condition, enhancing the performance of nutrient removal in this test.  相似文献   

14.
以某污水处理厂活性污泥作为种泥,采用序批式活性污泥法(SBR)进行反硝化聚磷菌(DPB)培养驯化研究。结果表明,经过厌氧-好氧,厌氧-换水-缺氧,厌氧-缺氧,厌氧-缺氧-短时曝气4个阶段培养驯化,系统出水效果良好:出水PO43--P的质量浓度稳定在0.5 mg.L-1以下,平均除磷率达96%;出水COD稳定在50 mg.L-1以下,平均去除率达77%。DPB占聚磷菌的比例约为65.02%。当投加不同含量的NO3--N时,硝酸盐的含量只影响吸磷速率而不影响吸磷量。当缺氧段DPB体内的PHB为限制因素时,缺氧吸磷过程在不同NO3--N含量下基本相同。  相似文献   

15.
To investigate the characteristics and metabolic mechanism of short-cut denitrifying phosphorus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-β-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring ΔP/ΔPHB and? ΔNO2--N/ΔPHB is more necessary than monitoring ΔP/ΔCOD,?ΔNO2--N/ΔCOD, or ΔNO2--N.  相似文献   

16.
反硝化聚磷污泥的基质利用及代谢途径   总被引:1,自引:1,他引:0       下载免费PDF全文
利用A/ASBR富集反硝化聚磷菌,并利用乙酸和葡萄糖两种基质进行反硝化聚磷实验,跟踪实验过程水中的磷酸盐、硝酸盐、COD与泥中PHA和糖原的变化,研究代谢途径。结果表明:(1)厌氧时磷酸盐的释放将决定PHA的合成,缺氧时PHA的分解一方面作为碳源将NO-3-N还原成了N2,同时产生的ATP为聚磷过程提供能量,因此在研究反硝化聚磷效果时,应重点跟踪ΔPHA,而不是ΔCOD。(2)以葡萄糖为基质时只有先通过发酵型的菌将葡萄糖分解为小分子的挥发性有机酸,才能充分发挥非发酵菌的反硝化聚磷功能。(相似文献   

17.
This paper primarily evaluates the effect of external substrate type on the composition of polyhydroxyalkanoates in enhanced biological phosphorus removal (EBPR). Two sets of sequencing batch reactors (SBRs) are operated for this purpose, one with acetate and the other with propionate as the sole carbon source at different influent COD/phosphate ratios in the range 6.7–20 mgCOD mg?1P. Results indicate that propionate is a more efficient substrate for EBPR, enabling total phosphate removal regardless of the change in COD/phosphate ratio. Total polyhydroxyalkanoates formation of 267–291 mgCOD L?1 with a slight increase at higher influent phosphorus levels is observed for acetate experiments, and a slightly lower level of 250–280 mgCOD L?1, with a similar trend for propionate experiments. The volatile fatty acid type and composition in the influent induces a significant difference in the polyhydroxyalkanoates composition of the two sets of activated sludge sustained in corresponding SBR systems. Propionate is mostly stored as 3‐hydroxy‐2‐methylvalerate and polyhydroxyvalerate, while acetate is stored as polyhydroxybutyrate. The P uptake rate in SBRs fed with propionate is considerably higher than that in the acetate reactors. Parallel batch experiments yield different results, especially for systems fed with acetate, indicating that the enzymatic system to metabolize propionate is not rapidly established, always yielding a dominant polyhydroxybutyrate fraction in the generated polyhydroxyalkanoates regardless of the level of propionate in the feed. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed (UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg•L-1) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.  相似文献   

19.
引言 随着水体富营养化问题的日渐突出,污水处理技术逐渐从单一去除有机物为目的的阶段进入既要去除有机物又要脱氮除磷的深度处理阶段[1].  相似文献   

20.
为进一步了解反硝化除磷菌,以SBR反应器在厌氧/好氧条件下培养的聚磷菌为对象,进行批次试验,研究了不同浓度NO_(2-)~--N对缺氧吸磷过程的影响。结果证实:NO_(2-)~--N可以作为缺氧吸磷的电子受体,但吸磷速率比好氧吸磷低,吸磷量比好氧吸磷少。反应开始时的NO_(2-)~--N/P对反应过程影响很大,该试验中NO_(2-)~--N/P为0.60时缺氧吸磷量和吸磷速率均达到最高。低于该值时,吸磷量和吸磷速率随着氮磷比的提高而增加,NO_(2-)~--N消耗完时,体系出现"二次释磷"现象;高于该值时,吸磷量和吸磷速率随着氮磷比的提高而减少。NO_(2-)~--N浓度达到80mg/L时,没有发现对反应的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号