共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamide 66/clay nanocomposites (PA66CN) were prepared via a melt compounding method using a new kind of organophilic clay, which was obtained through co‐intercalation of epoxy resin and quaternary ammonium into Na‐montmorillonite. The dispersion effect of silicate layers in the matrix was studied by means of XRD and TEM. The silicate layers were dispersed homogeneously and nearly exfoliated in the matrix as a result of the strong interaction between epoxy groups and PA66. The mechanical properties and heat distortion temperature (HDT) of PA66CN increased dramatically. The notched Izod impact strength of PA66CN was 50% higher than that of PA66 when the clay loading was 5 wt.‐%. Even at 10 wt.‐% clay content, the impact strength was still higher than that of PA66. The finely dispersed silicate layers and the strong interaction between silicate layers and the matrix reduced the water absorption, at 10 wt.‐% clay content; PA66CN only absorbs 60% water compared with PA66. The addition of silicate layers changed the crystal structure in PA66CN. 相似文献
2.
3.
Anastasia C. Boussia Maria O. Konstantakopoulou Stamatina N. Vouyiouka Constantine D. Papaspyrides 《大分子材料与工程》2011,296(2):168-177
Solid‐state polymerization (SSP) of a poly(hexamethyleneadipamide) (PA 6.6)/clay nanocomposite system was studied. SSP runs were performed in a fixed‐bed reactor, at temperatures 160–200 °C and reaction times up to 8 h. The influence of clay presence on the PA 6.6 SSP rate constant was herewith quantified for the first time to prove significant acceleration of the SSP process. A catalysis mechanism was suggested, according to which the positive effect of clay is of a synergistic origin attributed to nucleated crystal morphology, that increased the concentration of reactive end groups in the amorphous regions, to chain extension performed by clay SiOH groups, and to thermal protection of the polyamide matrix due to the presence of the nanoparticles.
4.
Fully exfoliated PS/clay nanocomposites were prepared via FRP in dispersion. Na‐MMT clay was pre‐modified using MPTMS before being used in a dispersion polymerization process. The objective of this study was to determine the impact of the clay concentrations on the monomer conversion, the polymer molecular weight, and the morphology and thermal stability of the nanocomposites prepared via dispersion polymerization. DLS and SEM revealed that the particle size decreased and became more uniformly distributed with increasing clay loading. XRD and TEM revealed that nanocomposites at low clay loading yielded exfoliated structures, while intercalated structures were obtained at higher clay loading.
5.
Giuliana Gorrasi Stéphane Bredeau Chiara Di Candia Giovanni Patimo Salvatore De Pasquale Philippe Dubois 《大分子材料与工程》2011,296(5):408-413
Preparation and analysis of morphologic and electrical properties of high‐performance multiwalled carbon nanotube/polyamide 6 nanocomposites was achieved. The MWNTs were surface‐coated by in situ polymerization of ethylene as catalyzed directly from the nanotube surface previously treated by a highly active metallocene‐based complex. The so‐produced polyethylene‐coated MWNTs were melt‐mixed with the PA6 matrix. Pristine MWNTs were also dispersed in PA6. The in situ ethylene polymerization/coating reaction allowed the destructuring of the native bundle‐like aggregates leading to the preparation of nanocomposites with improved properties even at very low nanofiller content.
6.
Arthur N. Wilkinson Zakaria Man John L. Stanford Petri Matikainen Mark L. Clemens Graham C. Lees Christopher M. Liauw 《大分子材料与工程》2006,291(8):917-928
Summary: Polymer‐layered silicate nanocomposites (PLSN), based on polyamide 6 (PA6) and montmorillonite (MMT) modified with an octadecylammonium salt, were produced via melt compounding in a co‐rotating twin‐screw extruder. Wide angle X‐ray diffraction (WAXD) and TEM revealed a PLSN containing 3.3% by weight (wt.‐%) of MMT to exhibit a mixed exfoliated/intercalated morphology, consisting mainly of individual silicate lamellae together with some intercalated stacks, resulting in a mean value of 1.8 lamellae per particle. In contrast, a PLSN containing a higher level of 7.2 wt.‐% MMT exhibited a more ordered intercalated structure, consisting mainly of a distribution of lamellae stacks with a mean value of 3.8 lamellae per particle. The dispersion of MMT in the PLSN generated very large polymer–filler interfacial areas, resulting in significant increase in the volume of constrained PA6 chain segments. Consequently, significant changes in the ratio of α/γ crystallites and in the thermal behaviour of the matrix PA6 were observed during WAXD, DSC and dynamic‐mechanical thermal analysis (DMTA) studies of the PLSN. In particular, damping data from DMTA showed relaxations between Tg and Tm resulting from amorphous polymer chain segments constrained at the polymer–filler interface, indicating the formation of a continuous phase of constrained polymer. In contrast, a PA6 microcomposite formed using unmodified MMT generated much lower polymer–filler interfacial area, with most of the MMT residing within large, poorly wetted aggregates. Consequently, changes to the thermal behaviour of the matrix PA6 were much less significant than those induced in the PLSN.
7.
Intercalation structure and toughening mechanism of graphene/urea‐formaldehyde nanocomposites prepared via in situ polymerization 下载免费PDF全文
Based on the industrialized graphene (GN) product, a series of graphene/urea‐formaldehyde nanocomposites were synthesized via in situ polymerization by incorporation of silicon coupling agent with terminal amino groups (SA) as the compatibilizer. The results showed that addition of SA coupling agent led to much more efficient grafting of UF molecules on the GN surface with high layer thickness by formation of hydrogen bonding, and thus complete exfoliation and uniform dispersion of GN were achieved for the composites. Compared with neat UF, the addition of 1.0 wt% GN resulted in a roughly 25% increase in tensile strength and 12% increase in impact strength; meanwhile the impact fracture surfaces of the composite showed obvious ductile fracture characteristics, indicating the reinforcing and toughening effect of GN on the UF matrix. With increasing GN content, the storage modulus, glass transition temperature and crosslinking density of UF increased, while the tan δmax decreased, suggesting that a double crosslinking network structure with GN centered crosslinking point and chemical crosslinking point of UF molecular chains formed, leading to improvement in the stiffness of the composites. The present work showed promising potential for developing high performance UF resin on an industrial scale. © 2017 Society of Chemical Industry 相似文献
8.
In this study, biobased polyamide/functionalized graphene oxide (PA-FGO) nanocomposite is developed using sustainable resources. Renewable PA is synthesized via polycondensation of hexamethylenediamine (HMDA) and biobased tetradecanedioic acid. Furthermore, GO is functionalized with HMDA to improve its compatibility with biobased PA and in situ polymerization is employed to obtain homogeneous PA-FGO nanocomposites. Compatibility improvement provides simultaneous increases in the tensile strength, storage modulus, and conductivity of PA by adding only 2 wt% FGO (PA-FGO2). The tensile strength and storage modulus of PA-FGO2 nanocomposite are enhanced dramatically by ≈50% and 30%, respectively, and the electrical conductivity reached 3.80 × 10–3 S m−1. In addition, rheology testing confirms a shear-thinning trend for all samples as well as a significant enhancement in the storage modulus upon increasing the FGO content due to a rigid network formation and strong polymer-filler interactions. All these improvements strongly support the excellent compatibility and enhanced interfacial interactions between organic–inorganic phases resulting from GO surface functionalization. It is expected that the biobased PA-FGO nanocomposites with remarkable thermomechanical properties developed here can be used to design high-performance structures for demanded engineering applications. 相似文献
9.
采用化学反应法制备了Ziegler-Natta/有机改性蒙脱土复合催化剂,并通过丙烯单体原位插层聚合法制备出聚丙烯/蒙脱土(PP/MMT)纳米复合材料,研究了复合材料的微观结构、热性能以及加工稳定性等。结果表明,原位聚合法制备的复合材料为剥离型纳米复合材料,其中MMT片层以纳米尺寸均匀分散在PP基体中,MMT平均厚度小于10nm;随MMT含量的提高,复合材料的热稳定性提高;原位聚合制备的PP/MMT纳米复合材料在长时间剪切过程中部分MMT会发生自聚集,控制剪切时间可以有效防止MMT的自聚集;原位聚合制备的PP/MMT复合材料(粉料)中,PP以α晶型为主,纳米MMT的引入并不会诱导生成聚丙烯β晶型,复合材料中β晶型的出现与退火条件有关。 相似文献
10.
Toluene 2, 4‐diisocyanate (TDI) functionalized multiwalled carbon nanotubes (MWNTs‐NCO) were used to prepare monomer casting polyamide 6 (MCPA6)/MWNTs nanocomposites via in situ anionic ring‐opening polymerization (AROP). Isocyanate groups of MWNTs‐NCO could serve as AROP activators of ?‐caprolactam (CL) in the in situ polymerization. Fourier transform infrared (FTIR) showed that a graft copolymer of PA6 and MWNTs was formed in the in situ polymerization. MWNTs‐PA6 covalent bonds of the graft copolymer constituted a strong type of interfacial interaction in the nanocomposites and increased the compatibility of MWNTs and MCPA6 matrix. The nanocomposites were characterized for the morphology, mechanical, crystallization, and thermal properties through field emission transmission electron microscopy (FETEM), tensile testing, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). FETEM analysis showed that MWNTs were homogeneously dispersed in MCPA6 matrix. The initial tensile strengths and tensile modulus of the nanocomposite with 1.5 wt % loading of MWNTs were enhanced by about 16 and 13%, respectively, compared with the corresponding values for neat MCPA6. DSC analysis indicated that the crystallization temperature of the nanocomposites was increased by 8°C by adding 1.5 wt % MWNTs compared with pure MCPA6. Besides, it was found that the thermal stability of MCPA6 was improved by the addition of the MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
Summary: A new technique, ultrasonically initiated in situ emulsion polymerization, was employed to prepare intercalated polystyrene/Na+‐MMT nanocomposites. FTIR, XRD, and TEM results confirm that the hydrophobic PS can easily intercalate into the galleries of hydrophilic montmorillonite via ultrasonically initiated in situ emulsion polymerization, taking advantages of the multi‐effects of ultrasonic irradiation, such as dispersion, pulverization, activation, and initiation. Properly reducing SDS concentration is beneficial to widen the d‐spacing between clay layers. However, the Na+‐MMT amount has little effect on the d‐spacing of nanocomposites. The glass transition temperature of nanocomposites increased as the percentage of clay increased, although the average molecular weight of PS decreased, and the decomposition temperature of the 1obtained nanocomposites moves to higher temperature.
12.
熔融插层制备聚合物/层状粘土纳米复合材料研究进展 总被引:13,自引:0,他引:13
从流变性能、加工操作过程对熔融插层制备聚合物纳米复合材料的影响、分散机理的研究进展等方面对熔融插层制备聚合物 /层状粘土进行了综述 ,并对今后的研究提出了展望。 相似文献
13.
Summary: More than twenty years have passed since we invented PCN, in which only a few wt.‐% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to those of pristine polymers. The number of papers on PCN has increased rapidly in recent years, reaching over 500 in 2005 alone. Being pioneers of this new technology, we review its history relative to the following epochal events:
- In 1985 we invented nylon 6‐clay hybrid (NCH), the first PCN.
- In 1989, cars equipped with a NCH part were launched.
- In 1997, Gilman found revolutionary fire retardancy in NCH.
- In 1997, a PP‐clay nanocomposite was prepared using a compatibilizer.
- In 1998, a compounding method for producing PCN was completed.
- In 2002, Haraguchi invented a revolutionary nanocomposite hydrogel.
14.
聚乳酸/有机蒙脱土纳米插层复合材料的原位插层聚合工艺及结构表征研究 总被引:2,自引:0,他引:2
采用新疆夏子街钠基蒙脱土为原矿制备的有机蒙脱土和丙交酯,通过原位插层聚合方法,合成聚乳酸/有机蒙脱土纳米复合材料.通过对反应体系真空度、催化剂用量、反应温度、反应时间和OMMT 加入量等对工艺条件的研究,确定了最佳合成条件.结果为:反应体系真空度为0.085 MPa,催化剂用量为丙交酯质量的0.5%,聚合反应的温度控制在170 ℃,聚合反应时间7 h,OMMT加入量3%(质量含量).采用傅立叶红外光谱仪、X射线衍射仪、扫描电子显微镜、透射电子显微镜对聚乳酸/有机蒙脱土纳米插层复合材料的微观结构、相态等进行了表征和分析. 相似文献
15.
This paper investigates the effect of both the clay loading and the monomer feed rate on the morphology and properties of poly(styrene‐co‐butyl acrylate)‐clay nanocomposites prepared in emulsion polymerization. Analysis by X‐ray diffraction (XRD) and transmission electron microscopy (TEM) of the nanocomposites prepared by batch polymerization showed that the polymer clay nanocomposites (PCNs) with 1–3 wt.‐% clay loading resulted in intercalated structures, while exfoliated structures were obtained at 10 wt.‐% clay loading. The polymerization was also carried out with semi‐batch polymerization. The morphology, thermal stability, and mechanical properties of nanocomposites obtained were found to be more strongly dependent on the clay/polymer ratio than the monomer feed rate.
16.
Cemil Dizman Sahin Ates Tamer Uyar Mehmet Atilla Tasdelen Lokman Torun Yusuf Yagci 《大分子材料与工程》2011,296(12):1101-1106
PSU/MMT nanocomposites are prepared by dispersing MMT nanolayers in a PSU matrix via in situ photoinduced crosslinking polymerization. Intercalated methacrylate‐functionalized MMT and polysulfone dimethacrylate macromonomer are synthesized independently by esterification. In situ photoinduced crosslinking of the intercalated monomer and the PSU macromonomer in the silicate layers leads to nanocomposites that are formed by individually dispersing inorganic silica nanolayers in the polymer matrix. The morphology of the nanocomposites is investigated by XRD and TEM, which suggests the random dispersion of silicate layers in the PSU matrix. TGA results confirm that the thermal stability and char yield of PSU/MMT nanocomposites increases with the increase of clay loading.
17.
A polyamide 6 (PA 6)/silica nanocomposite was obtained through a novel method, in situ polymerization, by first suspending silica particles in ϵ-caproamide under stirring and then polymerizing this mixture at high temperature under a nitrogen atmosphere. The silicas were premodified with aminobutyric acid prior to the polymerization. The effects of the addition of unmodified and modified silicas on the dispersion, interfacial adhesion, isothermal crystallization, and mechanical properties of PA 6 nanocomposites were investigated by using scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, and mechanical tests, respectively. The results show that the silicas dispersed homogeneously in the PA 6 matrix. The addition of silicas increases the glass transition temperature and crystallization rate of PA 6. The mechanical properties such as impact strength, tensile strength, and elongation at break of the PA 6/modified silica nanocomposites showed a tendency to increase and decrease with increase of the silica content and have maximum values at 5% silica content, whereas those of the PA 6/unmodified silica system decreased gradually. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 355–361, 1998 相似文献
18.
19.
Jyh‐Horng Wang Tai‐Horng Young Dar‐Jong Lin Min‐Kuei Sun Han‐Shiang Huag Liao‐Ping Cheng 《大分子材料与工程》2006,291(6):661-669
Summary: Clay/PMMA nanocomposites were prepared by melt blending of an organically modified MMT with PMMA under various process conditions. The MMT clay was initially cation exchanged with octadecylammonium to enhance its hydrophobicity and to expand the interlamellar space of the silicate plates. PMMA was then inserted into the inter‐lamellar space of the modified clay by melt blending at an elevated temperature. The effects of blending temperature, blending time, and clay/PMMA compositions on the level of expansion and homogenization were investigated. Composites with intercalated and/or exfoliated clay structure were obtained depending upon the process conditions, as confirmed by XRD diffractometry. The thermal decomposition temperature (Td) and glass transition temperature (Tg) of the composites were determined, respectively, by TGA and DSC analyses. Marked improvements, up to 35 °C, of the thermal stability (Td) with respect to pure PMMA were achieved for many of the composite samples. The Tg of the composites, however, does not increase accordingly. Furthermore, a novel type of bone cement was synthesized by applying the clay/PMMA nanocomposites as a substitute for PMMA in a typical formulation. These bone cements demonstrated much higher impact strength and better cell compatibility than the surgical Simplex P cement. Therefore, the bone cements with clay/PMMA nanocomposites meet the requirement for the architectural design of orthopedic surgery.
20.
Novel Polyamide 6/Polystyrene In Situ Microfibrillar Blends Prepared by Anionic Polymerization of ε‐Caprolactam via Reactive Extrusion 下载免费PDF全文
Dongguang Yan Jiao Li Jianghong Li Hongzhi Liu Haijun Zhou Guochun Shen 《大分子材料与工程》2016,301(10):1242-1247
In this study, polyamide 6/polystyrene in situ microfibrillar blends are prepared via anionic polymerization of ε‐caprolactam in a twin screw extruder. Scanning electron microscope analysis reveals that microfibrillated PA6 dispersed phase, which is continuous and preferentially oriented parallel to the extrusion direction, is in situ formed within polystyrene (PS) matrix during reactive extrusion at the content PS equal to 30 and 40 wt%. Mechanical properties analysis shows that the yield strength and elongation at break of PA6/PS (70/30 and 60/40) microfibrillar blends are remarkably increased with respect to those of pure PS. Also, the in situ fibrillation mechanisms are investigated by the analysis of morphological evolution. This work demonstrates a facile and efficient route to fabricate the microfibrillar blends with relatively high contents of polymer microfibrils.