首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
BACKGROUND: The reduction of highly mobile and toxic hexavalent chromium by bacterial strains is considered to be a viable alternative to reduce Cr(VI) contamination, in soils and water bodies, emanating from the overburden dumps of chromite ores and mine drainage. The present study reports the isolation of Cr(VI) resistant bacterial strains from an Indian chromite mine soil and their potential use in reduction of hexavalent chromium. RESULTS: Among the isolates, a bacterial strain (CSB‐4) was identified as Bacillus sp. based on standard biochemical tests and partial 16SrRNA gene sequencing, which was tolerant to as high as 2000 mg L?1 Cr(VI) concentration. The strain was capable of reducing Cr(VI) to Cr(III) in different growth media. Under the optimized conditions pH ~7.0, 100 mg L?1 Cr(VI), 35 °C temperature and stirring speed 100 rpm, CSB‐4 reduced more than 90% of Cr(VI) in 144 h. The time course reduction data fitted well an exponential rate equation yielding rate constants in the range 3.22 × 10?2 to 6.5 × 10?3 h?1 for Cr(VI) concentration of 10–500 mg L?1. The activation energy derived from temperature dependence rate constants between 25 and 35 °C was found to be 99 kJ mol?1. The characterization of reduced product associated with bacterial cells by SEM‐EDS, FT‐IR and XRD was also reported. CONCLUSION: Reasonably high tolerance and reduction ability of indigenous Bacillus sp. (CSB‐4) for Cr(VI) under a wide range of experimental conditions show promise for its possible use in reclamation of chromite ore mine areas including soils and water bodies. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Nitrogen-enriched nanobiopolymer has been fabricated using (2,3-epoxypropyl) trimethylammonium chloride (EPTMAC) and explored for the removal of Cr(VI) from tannery effluent. The removal efficiency of nanobiopolymer was found to be 23.99 mg g?1 (95.94%) under optimized conditions. The sorption data agrees well with the Langmuir and pseudo-second-order model. Equilibrium parameter (RL) and sorption energy show the favorability and physical binding of Cr(VI) on the nanobiopolymer’s backbone. The values of ?G° (?7.84 kJ mol?1), ?S° (65.97 J mol?1K?1) and ?H° (11.82 kJ mol?1) reflect the feasible nature of the sorption process. Reusability study was also conducted to state the performance of the nanobiopolymer.  相似文献   

4.
Macroporous copolymers of poly[(glycidyl methacrylate)‐co ‐(ethylene glycol dimethacrylate)] (PGME ) with various crosslinker (ethylene glycol dimethacrylate) concentrations and porosity parameters and additionally functionalized with hexamethylene diamine (PGME‐HD ) were tested as potential Cr(VI ) oxyanion sorbents from aqueous solutions. Kinetics of Cr(VI ) sorption was investigated in the temperature range 298–343 K and the results were fitted to chemical reaction and particle diffusion models. The Cr(VI ) sorption obeys the pseudo‐second‐order model with definite influence of pore diffusion. A temperature rise promotes chromium removal, with a maximum experimental uptake capacity of 4.21 mmol g?1 at 343 K for the sample with the highest amino group concentration. Equilibrium data were analysed with Langmuir, Freundlich and Temkin adsorption isotherm models. Thermodynamic parameters, i.e. Gibbs free energy (ΔG 0), enthalpy (ΔH 0) and entropy change (ΔS 0) and activation energy of sorption (E a), were calculated. The Cr(VI) adsorption onto PGME‐HD was found to be spontaneous and endothermic, with increased randomness in the system. Desorption experiments show that chromium anion sorption was reversible and the PGME‐HD sample GMA 60 HD was easily regenerated with 0.1 mol L?1 NaOH up to 90% recovery in the fourth sorption/desorption cycle. In the fifth cycle, a substantial sorption loss of 37% was observed. © 2016 Society of Chemical Industry  相似文献   

5.
The removal of chromium(III) in packed columns of zeolite and activated carbon has been studied. The process of Cr(III) exchange in 13X zeolite was optimized using mass transference parameters. In addition, the effects of pH, the presence of interfering ions and the anion associated with the chromium in the solution were studied. It was found that particle diameter controls the Cr(III) exchange in the zeolite, indicating that particle diffusion predominantly controls the process of Cr(III) exchange in 13X zeolite. A mixed system of zeolite and activated carbon columns increased the efficiency of chromium removal from diluted wastewater. This effect occurred due to the reduction of the organic matter (chemical oxygen demand), adsorption of chromium, and interfering ions on the activated carbon column. The activated carbon + zeolite column system emerges as an alternative method in Cr(III) removal from tannery effluents. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
7.
The transport of chromium(VI) through a flat‐sheet supported liquid membrane containing Cyanex 921 as a carrier has been investigated. The permeation of the metal is investigated as a function of various experimental variables: hydrodynamic conditions, concentration of chromium(VI) and HCl in the feed phase, carrier concentration and diluent in the membrane and strippant concentration in the stripping phase. The mass transfer coefficient and the thickness of the aqueous boundary layer were calculated from the experimental data. Furthermore, the selectivity of Cyanex 921‐based flat‐sheet supported liquid membrane towards different metal ions and the behaviour of the system against other carriers are presented. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
9.
Chitosan (90% deacetylated) coated magnetic adsorbent prepared by coprecipitation method to remove Cr(VI) from its aqueous solution. The experimental studies depicts that the predominant option for removal of Chromium by adsorption from its aqueous phase using Magnetic‐Chitosan (MC). The subsequent physical, chemical, and magnetic properties of MC were characterized by X‐ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectrometer, vibrating sample magnetometer. The influence of batch process parameters such as contact time, initial concentration, pH, and coexisting anions were investigated. The Box‐Behnken experimental design in response surface methodology was performed to design the experiment optimal operating conditions. The maximum percentage reduction of Cr(VI) is 96.3 that was obtained by magnetic chitosan with the optimal operating conditions of 149.53 mg/L at pH of 5.32 at the contact time of 80 min and at the temperature of 303 K. The average diameter of the magnetic chitosan was calculated from X‐ray diffractometer analysis as 24.5 nm. The equilibrium adsorption isotherm models such as Langmuir and Freundlich and the adsorption kinetics such as pseudo first order, pseudo second order and intra‐particle diffusion kinetic model were analyzed. The experimental data's suited for the best fit with the Langmuir isotherm model and pseudo first order kinetic model. It also revealed that Cr(VI) adsorption on MC is intrinsically exothermic and spontaneous. The magnetic chitosan was also used to investigate for the removal of Cr(VI) from the real water sources such as surface, underground, and tannery wastewater. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45878.  相似文献   

10.
BACKGROUND: Agro‐waste materials can be used as biosorbents of heavy metals in aqueous solution. However, it is necessary to further study the contribution of agro‐waste materials components (i.e. hemicelluloses, cellulose, and lignin) to the heavy metal ions removal from aqueous solution to better understand the biosorption mechanism, and also based on the biosorbents main components, to predict their potential to remove heavy metals. RESULTS: Cellulose is contained in major proportion (greater than 46%) in the agro‐waste materials reported herein compared with hemicelluloses (from 12% to 26%), lignin (varying from 3% to 10%), and other compounds (22% to 30%) that were removed after the neutral detergent fiber procedure. The identified functional groups in agro‐waste materials and their fractions included hydroxyl, carboxyl, and nitrogen‐containing compounds. Lignin contributed in higher proportion than hemicelluloses to Cr (III) adsorption capacity in both sorghum straw and oats straw. On the other hand lignin was the main fraction responsible for Cr (III) adsorption in agave bagasse. CONCLUSION: Hemicelluloses and lignin were the main contributors to Cr (III) removal from aqueous solution, and cellulose contained in the agro‐waste adsorbents studied did not seem to participate. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
12.
BACKGROUND: Sorption of polycyclic aromatic hydrocarbons (PAHs) on activated carbon and the Macronet polymeric sorbent MN200 was investigated to determine the effectiveness of each sorbent for removal of pollutants from aqueous solution and their possible use as sorbent materials for groundwater. Experiments were carried out to determine the loading capacities of a family of PAHs (acenaphthene, anthracene, fluoranthene, fluorene, naphthalene and pyrene). RESULTS: Activated carbon was the more effective sorbent, with maximum loadings of PAHs between 90 and 230 g kg?1, while MN200 resin showed values of 25–160 g kg?1. Loading isotherms based on the Langmuir, Freundlich and Redlich–Peterson models were determined. The hydrophobic character of the pollutants appeared as an important parameter related to the sorption process. Equilibrium and kinetic parameters were used to determine the retardation factors for each PAH. CONCLUSION: The calculated values for the simulation of barrier thickness using both sorbents, taking into account EU requirements for PAHs in groundwater effluent, were perfectly reasonable as a first estimate. The better kinetic properties of MN200 are evident in lower hydraulic residence times and consequently in a lower barrier thickness. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
BACKGROUND: The membrane filtration process enables the treatment of wastewater, producing permeate which is less polluted. However, disposal is usually required for the retentate, which is produced as a concentrated constituent along with the permeate. In this study, the authors explored the possibility of reusing, rather than disposing of, the retentate of pre‐filtered palm oil mill effluent (POME) as a fermentation substrate in protease production by a wild type strain of Aspergillus terreus IMI 282743. In addition, the quantitative and interactive effects of the concentration factor for retentate, temperature, inoculum concentration, and fermentation time on the optimization of protease production were investigated using response surface methodology (RSM). RESULTS: Using RSM, the optimum conditions were found to be a concentration factor of 7.27, temperature of 37.95 °C, inoculum concentration of 1.30% (v/v) and fermentation time of 3.83 days. The protease production was increased 4.37‐fold in comparison with the results obtained under non‐optimized conditions. CONCLUSION: To a certain extent, protease production could be enhanced with an increase in concentration factor and temperature, and a decrease of inoculum concentration and fermentation time. Also, POME retentate was found to be a good substrate for protease production with high product activity and without nutrient supplementation. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low‐density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
α-amylase from Bacillus licheniformis was successfully immobilized on developed support, which was prepared by coating a chitosan-casein film on silica, at 20 °C, pH 6.0 for 5 hr with microbial transglutaminase (MTG) as the cross-linking factor. The optimal support was obtained when 1% chitosan and 1% casein were used in the coating mixture. The optimal condition for immobilization catalyzed by MTG was confined to be at MTG concentration of 15 U/mL, pH 6.0, reacting for 6 hr at 20 °C. The highest specific activity of immobilized α-amylase was achieved as 236 U/g. After immobilization, the obtained enzyme showed broader pH profile and maintained more than 70% of the original activity after 20 reuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号