首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A psychophysical experiment was carried out to assess the perceptual contrast on a large‐sized liquid‐crystal display (LCD) under nine phases of viewing conditions. Based on the results, six contrast models employing different color attributes or the index of just‐noticeable difference (JND) were developed. Their performances were also tested by the visual data of the nine phases, which indicated that the model CQ employing CIECAM02 brightness gives the best performance in predicting visual data under different viewing conditions among those models. A preprocessing step was also proposed to utilize the contrast model CQ conveniently in the practical contrast evaluation of LCDs.  相似文献   

2.
Abstract— A continuous‐viewing‐angle‐controllable liquid‐crystal display (LCD) using a blue‐phase liquid crystal is proposed. To realize both wide‐viewing‐angle (WVA) mode and narrow‐viewing‐angle (NVA) mode with a single liquid‐crystal panel, each pixel is divided into a main pixel and a subpixel. The main pixel is for displaying images in both modes. The subpixel is for displaying images in WVA mode and controlling the viewing angle in NVA mode. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

3.
Abstract— A viewing‐angle‐controllable liquid‐crystal display (LCD) is proposed. When the device is only driven by an in‐plane electric field, it exhibits a wide‐viewing‐angle (WVA) mode. And it exhibits narrow‐viewing‐angle (NVA) mode when it is driven by a vertical electric field as well as an in‐plane electric field. In this manner, the viewing angle of the device can be controlled from 100° to 30°. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

4.
Abstract— Liquid‐crystal displays (LCDs) have notable variation in luminance and perceived contrast as a function of the angle from which they are viewed. Though this is an important performance issue for LCDs, most evaluation techniques for assessing this variation have been limited to laboratory settings. This study demonstrates the use of a photographic technique for such an evaluation. The technique is based on an actively cooled charge‐coupled‐device (CCD) detector in combination with a macro lens covering a circular angular range (θ) of ±42.5°. The camera was used to evaluate the luminance and perceived contrast properties of an LCD. Uniform field images corresponding to 17 equally spaced gray‐scale values in the digital driving level (DDL) range of the display system were acquired. The 12‐bit gray‐scale digital images produced by the camera were converted to luminance units (cd/m2) via the measured luminance vs. DDL response function of the camera. The changes in perceived contrast as a function of viewing angle were derived from the Barten model of the gray‐scale response of the human‐visual system using the methods proposed by the AAPM TG18 Report. The results of this photographic technique were compared to measurements acquired from a similar display using a Fourier‐optics‐based luminance meter. The results of the two methods generally agreed to within 5%. The photographic methods used were found to be accurate and robust for in‐field assessment of the angular response of LCDs over the FOV of the camera.  相似文献   

5.
Abstract— To understand actual viewing conditions at home is important for TV design. And the preferred luminance level of LCD TVs under actual viewing conditions is also important in order to obtain both good picture quality and low power consumption. The actual viewing conditions of households and the preferred luminance levels was investigated. In a field test of 83 households, the display luminance, screen illuminance, and viewing locations were measured on site. In laboratory experiments, young and elderly subjects adjusted the luminance of an LCD‐TV screen to their preferred levels under different screen illuminance levels, angular screen sizes, and average luminance levels (ALL) of the images. As a result, two equations, which represent the preferred luminance level of LCD‐TV screens corresponding to different viewing conditions for young and elderly subjects were obtained. When the ALL of the images was 25% and the screen illuminance and angular screen size were set at 100 lx and 20°, respectively, the preferred luminance was 1 60 cd/m2 for the young subjects and 248 cd/m2 for the elderly subjects. By using the setting of the preferred luminance of an LCD TV under actual viewing conditions, it is possible to conserve energy consumption.  相似文献   

6.
Abstract— 3‐D cross‐talk typically represents the ratio of image overlap between the left and right views. For stereoscopic LCDs using shutter‐glasses technology, 3‐D cross‐talk for stereoscopic LCD TV with a diagonal size of 46 in. and vertical alignment (VA) mode was measured to change from 1% to 10% when the stereoscopic display is rotated around the vertical axis. Input signals consist of the left and right images that include patterns of different amounts of binocular disparity and various gray levels. Ghost‐like artifacts are observed. Furthermore, intensities of these artifacts are observed to change as the stereoscopic display is rotated about the vertical axis. The temporal luminance of the LCD used in stereoscopic TV was found to be dependent on the viewing direction and can be considered as one cause of the phenomenon of angular dependence of performance for stereoscopic displays.  相似文献   

7.
Abstract— We theoretically modeled the optical plasmon absorption of anisotropic metallic nanoparticles in a liquid‐crystal host medium. Metallic nanorods and spheroids act as pleochroic dopants with virtually unlimited photostability. Calculations predict that full‐color displays based on nanorod orientation driven by the transition from homogeneous to homeotropic LC alignment are feasible. These displays are expected to have large viewing angles without the need for polarizers or LC anchoring surfaces.  相似文献   

8.
Abstract— Viewing‐angle dependences of the contrast ratio and color shift of LCDs have been radically improved as evidenced by the increasing application of LCDs in high‐quality television. This paper describes the concept of optical compensation and the fundamental characteristics of the viewing‐angle property for various LC modes.  相似文献   

9.
Abstract— A single‐cel l‐gap transflective liquid‐crystal display with two types of liquid‐crystal alignment based on an in‐plane‐switching structure is proposed. The transmissive region is almost homeotropically aligned with the rubbed surfaces at parallel directions while the reflective region has a homeotropic liquid‐crystal alignment. For every driving voltage for a positive‐dielectric‐anisotropy nematic liquid crystal, the effective cell‐retardation value in the transmissive region becomes larger than that in the reflective region because of optical compensation film which is generated by low‐pretilt‐angle liquid crystal in the transmissive region. Under the optimization of the liquid‐crystal cell and alignment used in the transmissive and reflective areas, the transmissive and reflective parts have similar gamma curves. An identical response time in both the transmissive and reflective regions and a desirable viewing angle for personal portable displays can also be obtained.  相似文献   

10.
Abstract— Based on the drop‐on‐demand characteristics of ink‐jet printing, the multi‐domain alignment liquid‐crystal display (LCD) could be achieved by using patterned polyimide materials. These polyimide ink locations with different alignment procedures could be defined in a single pixel, depending on the designer 's setting. In this paper, we combined the electro‐optical design, polyimide ink formulation, and ink‐jetting technology to demonstrate the application of multi‐domain alignment liquid‐crystal display manufactory. The first one was a multi‐domain vertical‐alignment LCD. After the horizontal alignment material pattern on the vertical alignment film, the viewing angle would reach 150° without compensation film. The second one was a single‐cell‐gap transflective LCD within integrating the horizontal alignment in the transmissive region and hybrid alignment in the reflective one in the same pixel. In addition, this transflective LCD was also demonstrated in the form of a 2.4‐in. 170‐ppi prototype.  相似文献   

11.
Abstract— A transflective polymer‐stabilized blue‐phase liquid‐crystal display (BP‐LCD) with a corrugated electrode structure is proposed. To balance the optical phase retardation between the transmissive (T) and reflective (R) regions, two device structures are proposed. The first device structure has the same inclination angles but different cell gaps in the T and R regions. And the second device structure has the same cell gap but different inclination angles in the T and R regions. Both of the device structures can obtain well‐matched VT and VR curves. This display exhibits low operating voltage, high optical efficiency, and a wide viewing angle.  相似文献   

12.
Abstract— LCDs based on a luminescent dichroic‐dye‐doped non‐absorbing cholesteric LC with positive dielectric anisotropy is proposed. In the initial state, the orientation of the dye molecules provides effective light absorption and irradiation. By applying an electric field to the cell, the absorption and thus the luminescence is absent. A two‐color luminescence could be achieved by sandwiching two cells: the upper cell consists of a cholesteric LC with two dyes (sensitizer and emitter) and is used with an applied voltage (active cell); the lower cell consists of a cholesteric LC doped with one dye and works without applying a voltage (passive cell). The performance characteristics of luminescent dye‐doped cholesteric‐LCDs were investigated.  相似文献   

13.
Abstract— Although the common twisted‐nematic liquid‐crystal displays (TN‐LCD) has excellent contrast and low color dispersion, it suffers from small viewing angle when driven into the homeotropic state. Among the many techniques proposed, in‐plane switching (IPS) has been quite effective in improving viewing angle. However, there may be difficulty in adopting conventional IPS to higher‐definition displays because it suffers from limited storage capacitance and reduced transmittance. A new comb‐on‐plane switching (COPS) electrode design is proposed. Compared to conventional IPS, COPS allows for lower switching voltage and offers advantages including naturally scalable storage capacitance, wide viewing angle with TN‐like high transmittance, and low color dispersion.  相似文献   

14.
Abstract— Under the European Union funded Advanced Three‐dimensional Television System Technologies (ATTEST) project, De Montfort University (DMU) is developing a 3D display system targeted specifically at domestic television applications. This system uses a modified transmissive LCD panel together with novel backlighting and optics to project multiple viewing regions, or exit pupils, into the viewing space. These exit pupils are located in space using a head tracker. The display accommodates multiple viewers simultaneously and imposes no physical constraints, such as special eyewear. Viewers may move freely over a “typical” room‐sized area. The design of the backlighting facilitates many other display regimes beyond the “standard” 3DTV mode in which each viewer sees the same image pair.  相似文献   

15.
Abstract— As use of handheld thermal‐imaging cameras (TICs) becomes more prevalent in the first‐responder community, it is important that standard test metrics be available to characterize imaging performance. A key performance consideration is the quality of the image presented on the TIC display. This paper focuses on TICs that use liquid‐crystal displays to render an image for the user. Current research on TIC performance for first‐responder applications makes use of trained observers and/or composite‐video‐output‐signal measurements. Trained observer tests are subjective and composite video output tests do not evaluate the performance of the complete imaging system. A non‐destructive objective method was developed that tests the performance of the entire thermal‐imaging system, from the infrared sensor to the display. A thermal target was used to correlate the measured thermal imager composite video output signal with the luminance of the display. A well‐characterized charge‐coupled‐device (CCD) camera and digital recording device were used to measure the display luminance. An electro‐optical transfer function was determined that directly relates the composite video output signal to the luminance of the display, providing a realistic characterization of system performance.  相似文献   

16.
Abstract— A 3‐m‐length black/white bistable cholesteric liquid‐crystal display was made by a roll‐to‐roll process and the display area is 25 × 300 cm. The black/white performance was made by black nano‐pigment and blended ChLC droplets with different wavelengths. It was written by a thermal‐addressing system, realizing high resolution and low cost.  相似文献   

17.
Abstract— A wide‐view transflective liquid‐crystal display (LCD) capable of switching between transmissive and reflective modes in response to different ambient‐light conditions is proposed. This transflective LCD adopts a single‐cell‐gap multi‐domain vertical‐alignment (MVA) cell that exhibits high contrast ratio, wide‐viewing angle, and good light transmittance (T) and reflectance (R). Under proper cell optimization, a good match between the VT and VR curves can also be obtained for single‐gamma‐curve driving.  相似文献   

18.
Abstract— An electrically controllable blueshift of the reflection band is observed in a cholesteric liquid crystal with either positive or negative dielectric anisotropy. The change in optical properties is a result of a two‐dimensional periodic undulation of the cholesteric texture, known as Helfrich deformation. This blueshift mechanism was used to demonstrate area‐color reflective displays in a cholesteric cell and a rollable polymeric film.  相似文献   

19.
Abstract— The De Montfort University (DMU) autostereoscopic 3‐D display, intended for television applications, is described. It provides freedom of viewer movement over a typical “living room” sized area, with no restrictions on viewer's head positions. The display is capable of supplying 3‐D images to multiple viewers who do not need to wear special glasses. It operates by producing regions (exit pupils) in the viewing field where either a left or a right image is perceived. The positions of the exit pupils are steered to the viewers' eyes by the use of head tracking. Design issues that became apparent during the construction of a first prototype, and the findings from tests on it, are described. In addition, the current status of a more advanced prototype is reported.  相似文献   

20.
Abstract— Several leading technologies for flexible liquid‐crystal displays have been developed recently at ERSO. The roll‐to‐roll compatible techniques, polymer‐added liquid crystal, have been applied on a film‐like substrate. A flexible black‐and‐white cholesteric liquid‐crystal display was also implemented by photo‐induced phase separation. Color filters placed on a plastic substrate by a low‐temperature manufacturing process was successfully fabricated. A novel design of a wide‐viewing‐angle color plastic LCD was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号