首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly(3,4‐ethylene dioxythiophene) (PEDOT) and graphite oxide (GO)/PEDOT composites (GPTs) doped with poly(sodium styrene sulfate) (PSS) were synthesized by in situ polymerization in aqueous media. The electrochemical capacitance performances of GO, PEDOT–PSS, and GPTs as electrode materials were investigated. The GPTs had a higher specific capacitance of 108 F/g than either composite constituent (11 F/g for GO and 87 F/g for PEDOT–PSS); this was attributable to its high electrical conductivity and the layer‐within/on‐layer composite structure. Such an increase demonstrated that the synergistic combination of GO and PEDOT–PSS had advantages over the sum of the individual components. On the basis of cycle‐life tests, the capacitance retention of about 78% for the GPTs compared with that of 66% for PEDOT–PSS after 1200 cycles suggested a high cycle stability of the GPTs and its potential as an electrode material for supercapacitor applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

3.
We report polymer solar cells (PSCs) based on poly(3‐hexylthiophene (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) using water‐soluble nickel acetate (Ni(CH3COO)2, NiAc) instead of acidic poly(3,4‐ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) as hole collection layer (HCL) between the indium tin oxide (ITO) electrode and photoactive layer. The NiAc layer can effectively decrease Rs and increase Rp and shows effective hole collection property. Under the illumination of AM1.5G, 100 mW/cm2, the short‐circuit current density (Jsc) of the NiAc based device (ITO/NiAc/P3HT : PCBM/Ca/Al) reach 11.36 mA/cm2, which is increased by 11% in comparison with that (10.19 mA/cm2) of PEDOT : PSS based device (ITO/PEDOT : PSS/P3HT : PCBM/Ca/Al). The power conversion efficiency of the NiAc based devices reach 3.76%, which is comparable to that (3.77%) of the device with PEDOT : PSS HCL under the same experimental conditions. Moreover, NiAc based PSCs show superior long‐term stability than PEDOT : PSS based PSCs. Our work gives a new option for HCL selection in designing more stable PSCs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
This paper reports a series of sequential post‐treatments using a polar solvent formamide to enhance the thermoelectric performance of poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of PEDOT:PSS films significantly increases from 0.33 S cm?1 for the pristine film to ≈2929 S cm?1 for the treated film and meanwhile the Seebeck coefficient maintains as high as 17.4 µV K?1, resulting in a power factor of 88.7 µW m?1 K?2. Formamide is a polar solvent with a high boiling point of 210 °C and high dielectric constant of 109, and PSS has a good solubility in it. Post‐treatment with formamide causes not only the phase segregation of PEDOT and PSS but also the removal of insulating PSS, therefore leading to the reorientation of PEDOT chains and enhancement in mobility without altering the doping level considerably. The cross‐plane thermal conductivity also reduces from 0.54 to 0.19 W m?1 K?1 after the post‐treatment, leading to a figure of merit (ZT) value of 0.04 at room temperature.  相似文献   

5.
Four kinds of counter electrodes are prepared with polystyrene‐sulfonate doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐PSS) as basic material, reduced graphene oxide (rGO) sheets as additives and H2SO4 as treating agent. The cyclic voltammetry and Tafel polarization are measured to evaluate catalytic activity of these counter electrodes for /I? redox couple. It is found that H2SO4 treated rGO and PEDOT‐PSS hybrid counter electrode (S/rGO/PEDOT‐PSS counter electrode) has the highest catalytic activity among these counter electrodes. Power conversion efficiency of the dye‐sensitized solar cell with S/rGO/PEDOT‐PSS counter electrode can attain to 7.065%, distinctly higher than that of the cells with the other three ones, owing to the great enhanced fill factor and short‐circuit current density. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42648.  相似文献   

6.
Mechanically robust and flexible polymer‐multiwall carbon nanotubes (MWCNT) composites are developed by in situ polymerization technique, where MWCNT are embedded in nontoxic, bio‐compatible acryl amide‐based polymer matrix. The addition of glycerol in the composite imparts required flexibility and a further addition of poly (3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) shows significant improvements in tensile modulus, strength, and toughness compared to the polymer matrix. The composite is characterized by Scanning electron microscopy, Raman spectroscopy Attenuated total reflectance Fourier Transform infrared spectroscopy. At optimized conditions; the composite forms a heterojunction diode with n‐Silicon having an electronic rectification ratio of 2.11 at ±1 V and a further addition of conducting polymer PEDOT: PSS in the composite enhances the electronic current rectification to 13.63 at ±1 V, with the turn on voltage of the device at 0.35 V. POLYM. COMPOS., 37:2860–2870, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

8.
Benzenesulfonate‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT‐Bzs)/graphene thermoelectric (TE) composites with various graphene filler contents were synthesized in five different kinds of solvents. Dodecylbenzenesulfonic acid (DBSA) was used to achieve good dispersion of graphene into the PEDOT matrix. Among the synthesized PEDOT materials, the one synthesized in methanol (PEDOT‐MeOH) had the highest electrical conductivity. X‐ray photoelectron spectroscopy (XPS) analysis showed almost the same charge carrier concentration for all PEDOT materials. However, the X‐ray diffraction (XRD) analysis highlighted the enhancement of PEDOT chain stacking by shorter‐chain alcoholic solvents, as a result of which the carrier mobility and electrical conductivity were increased. The electrical conductivity and the Seebeck coefficient of the PEDOT/graphene composites were significantly improved with increasing the graphene content, which strongly depended on increased carrier mobility. The thermal conductivity of the composites exhibited relatively small changes, attributed to phonon scattering effects. The maximum TE efficiency of the PEDOT‐MeOH/graphene composite with 75 wt % graphene showed a substantially improved value of 1.9 × 10?2, higher than that of the other PEDOT/graphene composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42107.  相似文献   

9.
Electroconductive papers were produced by coating commercial base papers with blends of poly(3,4‐ethylenedioxythiophene)/poly(4‐styrenesulfonate) (PEDOT:PSS) and organic solvents. The bulk conductivities of the coated papers were measured using a four‐probe technique. One‐sided and two‐sided coating gave comparable conductivity levels. The presence of sorbitol and isopropanol in the PEDOT:PSS blends did not enhance the bulk conductivity of the coated paper, and with increasing concentrations of these solvents, the conductivity decreased due to dilution of the conducting component. Samples coated with PEDOT:PSS blends containing N‐methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) exhibited a higher conductivity than those coated with pure PEDOT:PSS because of their plasticizing effect and conformational changes of PEDOT molecules indicated by the red shift and disappearance of the shoulder peak at about 1442 cm?1 in the Raman spectra of the coated samples. EDS imaging showed that PEDOT:PSS is distributed throughout the thickness direction of the paper. Contact angle measurements were made to monitor the hydrophilicity of the paper surface and total sulfur analysis was used to determine the amount of PEDOT:PSS deposited onto the paper. The tensile strength of all the paper samples increased slightly after treatment. Thus, it is demonstrated that enhanced bulk conductivity in the order of 10?3 S/cm can be achieved by using organic conductive materials and surface treatment techniques. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A high cycling stability material and an additive manufacturing method are reported for the fabrication of solid electrochromic devices. The poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/multi‐walled carbon nanotube (PEDOT:PSS/MWCNT) nanocomposites were synthesized via in situ polymerization. A carboxymethyl cellulose gel was used as the ink vehicle for screen printing. The electrochromic (EC) performance of films patterned by screen printing was also examined. The results of characterization indicate that strong interfacial interactions occurred between PEDOT:PSS and the MWCNTs and the MWCNTs formed a network in these conducting polymers film, so the composite was more conductive than pure PEDOT:PSS. Devices containing PEDOT:PSS/MWCNTs were more stable after 1000 cycles, exhibited higher rate of ion exchange and faster increases in current. The composite containing 0.3 wt % MWCNTs also had a 23% higher color contrast (ΔE*) than pure PEDOT:PSS at 2.5 V applied voltages. The EC inks with well printability not only can be used to print large area films, but also can print fine lines and pixel‐type dots in displays. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45943.  相似文献   

11.
In this study, the effect of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) nanofibers is investigated. Conductive PEDOT:PSS nanofibers are electrospun by dissolving a fiber‐forming polymer, polyvinyl alcohol, in an aqueous dispersion of PEDOT:PSS. The conductivity of PEDOT:PSS nanofibers is enhanced 15‐fold by addition of DMSO and almost 30‐fold by addition of ethylene glycol to the spinning dopes. This improvement is attributed to the change in the conformation of the PEDOT chains from the coiled benzoid to the extended coil quinoid structure as confirmed by Raman spectroscopy, X‐ray diffraction, and differential scanning calorimetry. Scanning electron microscopy images show that less beady and more uniform fiber morphology could be obtained by incorporation of ethylene glycol in the spinning dopes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40305.  相似文献   

12.
Poly(3,4‐ethylenedioxythiophene)/poly(4‐styrene sulfonate) (PEDOT/PSS) films hybridized with halloysite nanotubes (HNTs) were for the first time investigated for electromagnetic interference (EMI) shielding. The hybridization of the HNTs induced EMI properties for the pristine PEDOT/PSS films, and the content of the HNTs in the hybrid films significantly influenced the EMI properties of the hybrid films. The highest EMI shielding effectiveness of the hybrid film is ?16.3 dB in the measured frequency range from 2 to 13 GHz for the PEDOT/PSS film hybridized with 75% HNTs, using a sample with 4.5 mm thick. The contribution of EMI shielding effectiveness in the hybrid films is mainly due to dielectric loss rather than magnetic loss. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44242.  相似文献   

13.
The electrical conductivity of poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was enhanced by dipping the thin films prepared by spin coating technique in an aqueous DMSO solution. The low concentration range of DMSO in water between 0–5 vol % was studied in comparison with pure water and pure DMSO. It was found that the electrical conductivity dramatically increased as increasing the concentration of DMSO and reached the constant value of 350 S cm?1 at 2 vol % of aqueous DMSO solution. This could be explained by the conformational change of PEDOT chains from the coil structure to the linear or expanded coil structure as confirmed by Raman spectra. Further, white patches were obviously noticed on the surface of the films dipped in pure DMSO, indicating the phase separation of conductive PEDOT grains and associated PSS. The sulfur element of the dipped film surface was investigated by XPS. The XPS S2p core‐level spectra displayed that the unassociated PSS was considerably removed from the surface of PEDOT:PSS films dipped in pure water and 2 vol % of aqueous DMSO solution, indicating that the presence of water in the solvents is important to prominently promote the washing effect. Finally, UV–Vis spectra revealed the improved transparency of the films probably owing to the decreased film thickness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42108.  相似文献   

14.
Organic thermoelectric materials based on conducting polymers, especially for polyaniline (PANi) and poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), have attracted great concern due to their tunable electron transport properties by controlling doping level. Here, the solvent effects of deionized H2O and NH3·H2O were investigated on the electrical conductivity and Seebeck coefficient of PANi/PEDOT/PSS composite films. The introduction of PEDOT/PSS can not only effectively improve the quality of pure PANi film, but also enhance the electrical conductivity of PANi film. The different volumes of deionized H2O as dilution have a great influence on the electrical conductivity of PANi/PEDOT/PSS composite thin film with a maximum electrical conductivity value of 63.5 S cm?1, which is much higher than pure PANi and pristine PEDOT/PSS. The introduction of NH3·H2O shows a positive effect on Seebeck coefficient with a large decline on electrical conductivity of PANi/PEDOT/PSS. The Raman spectroscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy were used to obtain the morphology and structure information of PANi/PEDOT/PSS.  相似文献   

15.
Montmorillonite, organically modified by octadecylammine salt, has been adopted to successfully fabricate the exfoliated organic montmorillonite/poly(3,4‐ethyldioxythiophene) (OMMT/PEDOT) nanocomposites by in situ polymerization in aqueous media. Hydrochloric acid, 1,5‐naphthalenedisulfonic acid, and sodium benzenesulphonate have been employed to activate the polymerization of 3,4‐ethyldioxythiophene by offering active sites on the layers of montmorillonite. The resulting exfoliated nanocomposites have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, thermogravimetric analysis, and electrical conductivity measurement and showed controllable conductivity in the range of 10?7 to 10?2 S/cm and improved thermal stability compared with pure PEDOT. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Daiki Wakizaka 《Polymer》2004,45(25):8561-8565
Multilayered ultrathin films of a conductive polymer, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) were prepared by layer-by-layer deposition technique. These films were characterized by absorption spectroscopy, atomic force microscopy, cyclic voltammetry and potential step chronoamperometry. The PEDOT/PSS films were layered up with a bilayer thickness of 5 nm and the surface roughness of the films was improved after the ultrasonicated pretreatment of a PEDOT/PSS aqueous dispersion prior to the deposition. The ultrathin films thus obtained kept excellent diffusion constant of hole carriers, 5×10−10 cm2 s−1, as high as that of spin-cast films of PEDOT/PSS, indicating that the conducting polymer films are fabricated with nanometer-scale precision and act as a junction layer between the electrode and electrochemically active organic materials.  相似文献   

17.
The goal of this study is to determine the electrically conductivity of the polymers poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate): N-methyl-2-pyrrolidinone (PEDOT: PSS: NMP) and PEDOT: PSS when blended with polyvinyl alcohol (PVA). While the conducting polymers have high conductivity when not blended with PVA, they are brittle and difficult to spin-coat. Thus, the motivation for this study is to develop blends of these two conducting polymers with PVA to produce a material with optimized mechanical properties and that can also be spin-coated. The blends are produced using aqueous preparations of these materials. Mixtures of various weight percentages (wt %) of PEDOT: PSS: NMP and PEDOT: PSS are prepared and spin-coated on glass slides to form thin films. In the blends, the film conductivity increases with increasing content of either PEDOT: PSS: NMP or PEDOT: PSS. For example, 100 wt % of PEDOT: PSS: NMP and 60 wt % of PEDOT: PSS: NMP blended with PVA exhibit conductivities of, respectively, 10 and 4.02 S/cm. In contrast, conductivities of only 0.0525 and 0.000506 S/cm are observed, respectively, for 100 wt % of PEDOT: PSS and 60 wt % of PEDOT: PSS content in the PEDOT: PSS/PVA blends (No NMP). The addition of the NMP enhances the electrical conductivity by two to five orders of magnitude (depending on the amount of PVA in the blend) due to conformational change of PEDOT chains. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Li Chen 《Electrochimica acta》2009,54(8):2335-2341
A noncovalent method was used to functionalize multiwalled carbon nanotubes with poly (sodium 4-styrene sulfonate). And then, the core-shell poly (3,4-ethylenedioxythiophene)/functionalized multiwalled carbon nanotubes (PEDOT/PSS-CNTs) nanocomposite was successfully realized via in situ polymerization under the hydrothermal condition. In the process, PSS served for not only solubilizing and dispersing CNTs well into an aqueous solution, but also tethering EDOT monomer onto the surface of CNTs to facilitate the formation of a uniform PEDOT coating. Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) were used to characterize the resultant PEDOT/PSS-CNTs. In addition, the PEDOT/PSS-CNTs nanocomposite (50 wt.% PEDOT) had a specific capacitance (SC) of 198.2 F g−1 at a current density of 0.5 A g−1 and a capacitance degradation of 26.9% after 2000 cycles, much better than those of pristine PEDOT and PEDOT/CNTs (50 wt.% PEDOT). The enhanced electrochemical performance of the PEDOT/PSS-CNTs nanocomposite (50 wt.% PEDOT) should be attributed to the high uniform system of the nanocomposite, resulting in the large surface easily contacted by abundant electrolyte ions through the three-dimensional conducting matrix.  相似文献   

19.
This paper reports a range of effective sequential chemical processes to enhance the thermoelectric performance of conducting poly(3,4‐ethylenedioxythiophene) films doped with poly(styrene sulfonate) anions (PEDOT:PSS). The electrical conductivity of the PEDOT:PSS films was significantly increased from 0.33 to 3748 S cm?1 after a series of sequential treatments with trifluoroacetic acid (TFA) while the Seebeck coefficient and thermal conductivity were slightly reduced from 17.5 ± 1.2 to 16.0 ± 1.1 μV K?1 and 0.537 to 0.415 W m–1 K?1 for the pristine film and treated film, respectively, leading to a significant improvement in power factor up to 97.1 ± 5.4 μW m–1 K?2. More importantly, around 80% of the electrical conductivity and Seebeck coefficient was retained after 20 days for these TFA‐treated PEDOT:PSS films, revealing the potential for real thermoelectric applications. © 2019 Society of Chemical Industry  相似文献   

20.
The flexible transparent electrodes were fabricated by line patterning of conductive inks consisting of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonic acid) (PEDOT:PSS) water dispersion, ethylene glycol, isopropyl alcohol, and tetraethoxysilane (TEOS) on polyethylene terephthalate (PET) films. The values of sheet resistance (Rs), total light transmittance, haze, figure‐of‐merit, and pencil hardness of the PEDOT:PSS‐TEOS/PET film were found to be 301 Ω/sq., 85.0%, 2.4%, 41, and 2H, respectively. Furthermore, a resistive touch screen panel was fabricated using the PEDOT:PSS‐TEOS/PET film as the top electrode. It was found that the drawing on the resistive touch screen panel was successfully displayed on the PC screen with good in‐plane uniformity and maximum linearity of 0.8%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号