首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a level‐set‐based topology optimization method based on numerically consistent sensitivity analysis. The proposed method uses a direct steepest‐descent update of the design variables in a level‐set method; the level‐set nodal values. An exact Heaviside formulation is used to relate the level‐set function to element densities. The level‐set function is not required to be a signed‐distance function, and reinitialization is not necessary. Using this approach, level‐set‐based topology optimization problems can be solved consistently and multiple constraints treated simultaneously. The proposed method leads to more insight in the nature of level‐set‐based topology optimization problems. The level‐set‐based design parametrization can describe gray areas and numerical hinges. Consistency causes results to contain these numerical artifacts. We demonstrate that alternative parameterizations, level‐set‐based or density‐based regularization can be used to avoid artifacts in the final results. The effectiveness of the proposed method is demonstrated using several benchmark problems. The capability to treat multiple constraints shows the potential of the method. Furthermore, due to the consistency, the optimizer can run into local minima; a fundamental difficulty of level‐set‐based topology optimization. More advanced optimization strategies and more efficient optimizers may increase the performance in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we propose a new BEM for level‐set based topology optimization. In the proposed BEM, the nodal coordinates of the boundary element are replaced with the nodal level‐set function and the nodal coordinates of the Eulerian mesh that maintains the level‐set function. Because this replacement causes the nodal coordinates of the boundary element to disappear, the boundary element mesh appears to be immersed in the Eulerian mesh. Therefore, we call the proposed BEM an immersed BEM. The relationship between the nodal coordinates of the boundary element and the nodal level‐set function of the Eulerian mesh is clearly represented, and therefore, the sensitivities with respect to the nodal level‐set function are strictly derived in the immersed BEM. Furthermore, the immersed BEM completely eliminates grayscale elements that are known to cause numerical difficulties in topology optimization. By using the immersed BEM, we construct a concrete topology optimization method for solving the minimum compliance problem. We provide some numerical examples and discuss the usefulness of the constructed optimization method on the basis of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
4.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we propose an approach for reliability‐based design optimization where a structure of minimum weight subject to reliability constraints on the effective stresses is sought. The reliability‐based topology optimization problem is formulated by using the performance measure approach, and the sequential optimization and reliability assessment method is employed. This strategy allows for decoupling the reliability‐based topology optimization problem into 2 steps, namely, deterministic topology optimization and reliability analysis. In particular, the deterministic structural optimization problem subject to stress constraints is addressed with an efficient methodology based on the topological derivative concept together with a level‐set domain representation method. The resulting algorithm is applied to some benchmark problems, showing the effectiveness of the proposed approach.  相似文献   

6.
This paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Level set methods have become an attractive design tool in shape and topology optimization for obtaining lighter and more efficient structures. In this paper, the popular radial basis functions (RBFs) in scattered data fitting and function approximation are incorporated into the conventional level set methods to construct a more efficient approach for structural topology optimization. RBF implicit modelling with multiquadric (MQ) splines is developed to define the implicit level set function with a high level of accuracy and smoothness. A RBF–level set optimization method is proposed to transform the Hamilton–Jacobi partial differential equation (PDE) into a system of ordinary differential equations (ODEs) over the entire design domain by using a collocation formulation of the method of lines. With the mathematical convenience, the original time dependent initial value problem is changed to an interpolation problem for the initial values of the generalized expansion coefficients. A physically meaningful and efficient extension velocity method is presented to avoid possible problems without reinitialization in the level set methods. The proposed method is implemented in the framework of minimum compliance design that has been extensively studied in topology optimization and its efficiency and accuracy over the conventional level set methods are highlighted. Numerical examples show the success of the present RBF–level set method in the accuracy, convergence speed and insensitivity to initial designs in topology optimization of two‐dimensional (2D) structures. It is suggested that the introduction of the radial basis functions to the level set methods can be promising in structural topology optimization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Structural optimization methods based on the level set method are a new type of structural optimization method where the outlines of target structures can be implicitly represented using the level set function, and updated by solving the so‐called Hamilton–Jacobi equation based on a Eulerian coordinate system. These new methods can allow topological alterations, such as the number of holes, during the optimization process whereas the boundaries of the target structure are clearly defined. However, the re‐initialization scheme used when updating the level set function is a critical problem when seeking to obtain appropriately updated outlines of target structures. In this paper, we propose a new structural optimization method based on the level set method using a new geometry‐based re‐initialization scheme where both the numerical analysis used when solving the equilibrium equations and the updating process of the level set function are performed using the Finite Element Method. The stiffness maximization, eigenfrequency maximization, and eigenfrequency matching problems are considered as optimization problems. Several design examples are presented to confirm the usefulness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a level set‐based topology optimization method targeting metallic waveguide design problems, where the skin effect must be taken into account since the metallic waveguides are generally used in the high‐frequency range where this effect critically affects performance. One of the most reasonable approaches to represent the skin effect is to impose an electric field constraint condition on the surface of the metal. To implement this approach, we develop a boundary‐tracking scheme for the arbitrary Lagrangian Eulerian (ALE) mesh pertaining to the zero iso‐contour of the level set function that is given in an Eulerian mesh, and impose Dirichlet boundary conditions at the nodes on the zero iso‐contour in the ALE mesh to compute the electric field. Since the ALE mesh accurately tracks the zero iso‐contour at every optimization iteration, the electric field is always appropriately computed during optimization. For the sensitivity analysis, we compute the nodal coordinate sensitivities in the ALE mesh and smooth them by solving a Helmholtz‐type partial differential equation. The obtained smoothed sensitivities are used to compute the normal velocity in the level set equation that is solved using the Eulerian mesh, and the level set function is updated based on the computed normal velocity. Finally, the utility of the proposed method is discussed through several numerical examples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The design and analysis of phononic crystals (PnCs) are generally based on the deterministic models without considering the effects of uncertainties. However, uncertainties that existed in PnCs may have a nontrivial impact on their band structure characteristics. In this paper, a sparse point sampling–based Chebyshev polynomial expansion (SPSCPE) method is proposed to estimate the extreme bounds of the band structures of PnCs. In the SPSCPE, the interval model is introduced to handle the unknown‐but‐bounded parameters. Then, the sparse point sampling scheme and the finite element method are used to calculate the coefficients of the Chebyshev polynomial expansion. After that, the SPSCPE method is applied for the band structure analysis of PnCs. Meanwhile, the checkerboard and hinge phenomena are eliminated by the hybrid discretization model. In the end, the genetic algorithm is introduced for the topology optimization of PnCs with unknown‐but‐bounded parameters. The specific frequency constraint is considered. Two numerical examples are investigated to demonstrate the effectiveness of the proposed method.  相似文献   

11.
This paper presents a level set‐based shape and topology optimization method for conceptual design of cast parts. In order to be successfully manufactured by the casting process, the geometry of cast parts should satisfy certain moldability conditions, which poses additional constraints in the shape and topology optimization of cast parts. Instead of using the originally point‐wise constraint statement, we propose a casting constraint in the form of domain integration over a narrowband near the material boundaries. This constraint is expressed in terms of the gradient of the level set function defining the structural shape and topology. Its explicit and analytical form facilitates the sensitivity analysis and numerical implementation. As compared with the standard implementation of the level set method based on the steepest descent algorithm, the proposed method uses velocity field design variables and combines the level set method with the gradient‐based mathematical programming algorithm on the basis of the derived sensitivity scheme of the objective function and the constraints. This approach is able to simultaneously account for the casting constraint and the conventional material volume constraint in a convenient way. In this method, the optimization process can be started from an arbitrary initial design, without the need for an initial design satisfying the cast constraint. Numerical examples in both 2D and 3D design domain are given to demonstrate the validity and effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Historically, the creation of lightweight, yet mechanically robust, materials have been the most sought‐after engineering pursuit. For that purpose, research efforts are dedicated to finding pathways to emulate and mimic the resilience offered by natural biological systems (i.e., bone and wood). These natural systems evolved over time to provide the most attainable structural efficiency through their architectural characteristics that can span over multiple length scales. Nature‐inspired man‐made cellular metamaterials have effective properties that depend largely on their topology rather than composition and are hence remarkable candidates for a wide range of application. Despite their geometrical complexity, the fabrication of such metamaterials is made possible by the emergence of advanced fabrication techniques that permit the fabrication of complex architectures down to the nanometer scale. In this work, we report the fabrication and mechanical testing of nature‐inspired, mathematically created, micro‐architected, cellular metamaterials with topologies based on triply periodic minimal surfaces (TPMS) with cubic symmetries fabricated through direct laser writing two‐photon lithography. These TPMS‐based microlattices are sheet/shell‐ and strut‐based metamaterials with high geometrical complexity. Interestingly, results show that TPMS sheet‐based microlattices follow a stretching‐dominated mode of deformation, and further illustrate their mechanical superiority over the traditional and well‐known strut‐based microlattices and microlattice composites. The TPMS sheet‐based polymeric microlattices exhibited mechanical properties superior to other micrloattices comprising metal‐ and ceramic‐coated polymeric substrates and, interestingly, are less affected by the change in density, which opens the door for fabricating ultralightweight materials without much sacrificing mechanical properties.
  相似文献   

13.
In this paper, the spectral‐domain method is used to calculate the propagation characteristics of cylindrical microstrip transmission lines. The problem is formulated using an electric field integral equation and the spectral‐domain Green's function. The solutions of the field components are obtained in matrix forms, which facilitate the calculations of the Green's function and the power flowing over the lines. The Green's functions are obtained in terms of transition matrices over the dielectric layers. The obtained integral equation is solved by moment method using four kinds of basis functions. The convergence of the method is proven. Based on the power–current definition, a stationary expression for the characteristic impedance has been derived analytically. Numerical results of the effective dielectric constant and the characteristic impedance for various line parameters are calculated and analysed. The computed data are found to be in good agreement with results obtained using other methods. The formulation is then applied to covered microstripline, microstripline and stripline with air gaps, for which data are not found in the literature to date. The presented method is used to guide design of microstrip coil for magnetic resonance imaging. This method is also suitable for investigation of multiconductor strip lines. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A parameterization level set method is presented for structural shape and topology optimization of compliant mechanisms involving large displacements. A level set model is established mathematically as the Hamilton–Jacobi equation to capture the motion of the free boundary of a continuum structure. The structural design boundary is thus described implicitly as the zero level set of a level set scalar function of higher dimension. The radial basis function with compact support is then applied to interpolate the level set function, leading to a relaxation and separation of the temporal and spatial discretizations related to the original partial differential equation. In doing so, the more difficult shape and topology optimization problem is now fully parameterized into a relatively easier size optimization of generalized expansion coefficients. As a result, the optimization is changed into a numerical process of implementing a series of motions of the implicit level set function via an existing efficient convex programming method. With the concept of the shape derivative, the geometrical non‐linearity is included in the rigorous design sensitivity analysis to appropriately capture the large displacements of compliant mechanisms. Several numerical benchmark examples illustrate the effectiveness of the present level set method, in particular, its capability of generating new holes inside the material domain. The proposed method not only retains the favorable features of the implicit free boundary representation but also overcomes several unfavorable numerical considerations relevant to the explicit scheme, the reinitialization procedure, and the velocity extension algorithm in the conventional level set method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We present a density‐based topology optimization approach for the design of metallic microwave insert filters. A two‐phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts, and hence, the proposed design method offers a new design tool in microwave engineering. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
With unusual electromagnetic radiation properties and great application potentials, optical toroidal moments have received increasing interest in recent years. 3D metamaterials composed of split ring resonators with specific orientations in micro‐/nanoscale are a perfect choice for toroidal moment realization in optical frequency considering the excellent magnetic confinement and quality factor, which, unfortunately, are currently beyond the reach of existing micro‐/nanofabrication techniques. Here, a 3D toroidal metamaterial operating in mid‐infrared region constructed by metal patterns and dielectric frameworks is designed, by which high‐quality‐factor toroidal resonance is observed experimentally. The toroidal dipole excitation is confirmed numerically and further demonstrated by phase analysis. Furthermore, the far‐field radiation intensity of the excited toroidal dipoles can be adjusted to be predominant among other multipoles by just tuning the incident angle. The related processing method expands the capability of focused ion beam folding technologies greatly, especially in 3D metamaterial fabrication, showing great flexibility and nanoscale controllability on structure size, position, and orientation.  相似文献   

17.
Origami is the art of folding two‐dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three‐dimensional (3D) objects. This study reports origami‐based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura‐ori split‐ring resonators. The deformation of the Miura‐ori unit along the third dimension induces net electric and magnetic dipoles of split‐ring resonators parallel or anti‐parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties.  相似文献   

18.
This paper develops a new reliability‐based topology optimization framework considering spatially varying geometric uncertainties. Geometric imperfections arising from manufacturing errors are modeled with a random threshold model. The projection threshold is represented by a memoryless transformation of a Gaussian random field, which is then discretized by means of the expansion optimal linear estimation. The structural response and their sensitivities are evaluated with the polynomial chaos expansion, and the accuracy of the proposed method is verified by Monte Carlo simulations. The performance measure approach is adopted to tackle the reliability constraints in the reliability‐based topology optimization problem. The optimized designs obtained with the present method are compared with the deterministic solutions and the reliability‐based design considering random variables. Numerical examples demonstrate the efficiency of the proposed method.  相似文献   

19.
This work presents a level set framework to solve the compliance topology optimization problem considering design‐dependent pressure loads. One of the major technical difficulties related to this class of problem is the adequate association between the moving boundary and the pressure acting on it. This difficulty is easily overcome by the level set method that allows for a clear tracking of the boundary along the optimization process. In the present approach, a reaction‐diffusion equation substitutes the classical Hamilton‐Jacobi equation to control the level set evolution. This choice has the advantages of allowing the nucleation of holes inside the domain and the elimination of the undesirable reinitialization steps. Moreover, the proposed algorithm allows merging pressurized (wet) boundaries with traction‐free boundaries during level set movements. This last property, allied to the simplicity of the level set representation and successful combination with the reaction‐diffusion based evolution applied to a design‐dependent pressure load problem, represents the main contribution of this paper. Numerical examples provide successful results, many of which comparable with others found in the literature and solved with different techniques.  相似文献   

20.
This paper describes a new wavelet boundary element method (WBEM) for large‐scale simulations of three‐dimensional Stokes problems. It is based on a Galerkin formulation and uses only one set of wavelet basis. A method for the efficient discretization and compression of the double‐layer integral operator of Stokes equation is proposed. In addition, a compression strategy for further reducing the setting‐up time for the sparse system matrix is also developed. With these new developments, the method has demonstrated a high matrix compression rate for problems with complicated geometries. Applications of the method are illustrated through several examples concerning the modeling of damping forces acting on MEMS resonators including a cantilever resonator oscillating in an unbounded air and a perforated plate resonator oscillating next to a fixed substrate. The numerical results clearly illustrate the efficiency and accuracy of the developed WBEM in these large‐scale Stokes flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号