首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A process to make self‐aligned top‐gate amorphous indium‐gallium‐zinc‐oxide (a‐IGZO) thin‐film transistors (TFTs) on polyimide foil is presented. The source/drain (S/D) region's parasitic resistance reduced during the SiN interlayer deposition step. The sheet resistivity of S/D region after exposure to SiN interlayer deposition decreased to 1.5 kΩ/□. TFTs show field‐effect mobility of 12.0 cm2/(V.s), sub‐threshold slope of 0.5 V/decade, and current ratio (ION/OFF) of >107. The threshold voltage shifts of the TFTs were 0.5 V in positive (+1.0 MV/cm) bias direction and 1.5 V in negative (?1.0 MV/cm) bias direction after extended stressing time of 104 s. We achieve a stage‐delay of ~19.6 ns at VDD = 20 V measured in a 41‐stage ring oscillator. A top‐emitting quarter‐quarter‐video‐graphics‐array active‐matrix organic light‐emitting diode display with 85 ppi (pixels per inch) resolution has been realized using only five lithographic mask steps. For operation at 6 V supply voltage (VDD), the brightness of the display exceeds 150 cd/m2.  相似文献   

2.
In this paper, a novel gate driver circuit, which can achieve high reliability for depletion mode in a‐InGaZnO thin‐film transistors (TFTs), was proposed. To prevent the leakage current paths for Q node effectively, the new driving method was proposed by adopting the negative gate‐to‐source voltage (VGS) value for pull‐down units. The results showed all the VOUT voltage waveforms were maintained at VGH voltage despite depletion‐mode operation. The proposed circuit could also obtain stable VOUT voltage when the threshold voltage for all TFTs was changed from ?6.5 to +11.5 V. Therefore, the circuit can achieve high reliability regardless of threshold voltage value for a‐IGZO TFTs. In addition, the output characteristics and total power consumption were shown for the alternating current (AC)–driven and direct current (DC)–driven methods based on 120‐Hz full‐HD graphics (1920 × 1080) display panel. The results showed that the AC‐driven method could achieve improved VOUT characteristics compared with DC‐driven method since the leakage current path for Q node can be completely eliminated. Although power consumption of the AC‐driven method can be slightly increased compared with the DC‐driven method for enhancement mode, consumption can be lower when the operation has depletion‐mode characteristics by preventing a leakage current path for pull‐down units. Consequently, the proposed gate driver circuit can overcome the problems caused by the characteristics of a‐IGZO TFTs.  相似文献   

3.
In this study, we report high‐quality amorphous indium–gallium–zinc‐oxide (a‐IGZO) thin‐film transistors (TFTs) fabricated on a polyethylene naphthalate foil using a new back‐channel‐etch (BCE) process flow. The BCE flow allows a better scalability of TFTs for high‐resolution backplanes and related circuits. The maximum processing temperature was limited to less than 165 °C in order to ensure good overlay accuracy (<1 µm) on foil. The presented process flow differs from the previously reported flow as we define the Mo source and drain contacts by dry etch prior to a‐IGZO patterning. The TFTs show good electrical performance, including field‐effect mobilities in the range of 15.0 cm2/(V·s), subthreshold slopes of 0.3 V/decade, and off‐currents <1.0 pA on foil. The threshold voltage shifts of the TFTs measured were less than 1.0 V after a stressing time of 104 s in both positive (+1.0 MV/cm) and negative (?1.0 MV/cm) bias directions. The applicability of this new BCE process flow is demonstrated in a 19‐stage ring oscillator, demonstrated to operate at a supply voltage of 10 V with a stage delay time of 1.35 µs, and in a TFT backplane driving a 32 × 32 active‐matrix organic light‐emitting diode display.  相似文献   

4.
Abstract— The equations for the transfer characteristics, subthreshold swing, and saturation voltage of double‐gate (DG) a‐IGZO TFTs, when the top‐ and bottom‐gate electrodes are connected together (synchronized), were developed. From these equations, it is found thatsynchronized DG a‐IGZO TFTs can be considered as conventional TFTs with a modified gate capacitance and threshold voltage. The developed models were compared with the top or bottom gate only bias conditions. The validity of the models is discussed by using the extracted TFT parameters for DG coplanar homojunction TFTs. Lastly, the new pixel circuit and layout based on a synchronized DG a‐IGZO TFT is introduced.  相似文献   

5.
This letter investigates the negative‐bias temperature instability (NBTI) behavior of p‐channel low‐temperature polycrystalline silicon thin‐film transistors (LTPS TFTs) on plastic substrate. The measurements reveal that the threshold‐voltage positive shift is highly correlated to the passivation of grain boundary trap states. By applying the established phenomenon such as NBTI recovery and H diffusion from PI substrate, a new model is introduced to explain the mechanism and verified by the experiment. With the thick buffer and bottom metal layer or newly processed PI substrate, we succeeded in adjusting the NBTI behavior of LTPS TFTs on plastic substrate.  相似文献   

6.
Abstract— The stability and reliability of oxide‐semiconductor TFTs were investigated. The contact material to the oxide semiconductor affected the thermal stability of the TFT, and a molybdenum‐contact source/drain showed good stability. And the passivating film and TFT structure affected the stability against bias stress and humidity stress, and dc‐sputtered Al2O3 passivation and fully covered channel structure with an etching stopper or source/drain showed good reliability. Moreover, high photo‐stability was confirmed by the bias‐enhanced photo‐irradiation stress test. An 11.7‐in.‐diagonal qHD AMOLED display was demonstrated to provide an applicable solution for a large‐sized OLED and an ultra‐high‐definition LCD‐TV mass production.  相似文献   

7.
Abstract— The world's thinnest flexible full‐color 5.6‐in. active‐matrix organic‐light‐emitting‐diode (AMOLED) display with a top‐emission mode on stainless‐steel foil was demonstrated. The stress in the stainless‐steel foil during the thermal process was investigated to minimize substrate bending. The p‐channel poly‐Si TFTs on stainless‐steel foil exhibited a field‐effectmobility of 71.2 cm2/N‐sec, threshold voltage of ?2.7 V, off current of 6.7 × 1013 A/μm, and a subthreshold slope of 0.63 V/dec. These TFT performances made it possible to integrate a scan driver circuit on the panel. A top‐emission EL structure was used as the display element, and thin‐film encapsulation was performed to realize a thin and flexible display. The full‐color flexible AMOLED display on stainless‐steel foil is promising for mobile applications because of its thin, light, rugged, and flexible properties.  相似文献   

8.
Abstract— The temperature dependence of the hysteresis of an a‐Si:H TFT has been investigated. An a‐Si:H TFT pixel driving scheme has been proposed and investigated. This scheme can eliminate changes in the organic light‐emitting diode (OLED) current caused by hysteresis of an a‐Si:H TFT. The VTH of the a‐Si:H TFT was changed according to the gate‐voltage sweep direction because of the hysteresis of the a‐Si:H TFT. The variation of VTH for a a‐Si:H TFT decreased from 0.41 to 0.17 V at an elevated temperature of 60°C because the sub‐threshold slope (s‐slope) of the a‐Si:H TFT, in the reverse voltage sweep direction, increased more than in the forward voltage sweep direction due to a greater increase in the initial electron trapped charges than the hole charges. Although the OLED current variation caused by hysteresis decreased (~14%) as the temperature increased, the error in the OLED current needed to be improved in order to drive the pixel circuit of AMOLED displays. The proposed pixel circuit can apply the reset voltage (?10 V) before the data voltage for the present frame that was written to fix the sweep direction of the data voltage. The variation in the OLED current caused by hysteresis of the a‐Si:H TFT was eliminated by the fixed voltage sweep direction in the proposed pixel circuit regardless of operating temperature.  相似文献   

9.
Abstract— An active‐matrix organic light‐emitting diode (AMOLED) display driven by hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) on flexible, stainless‐steel foil was demonstrated. The 2‐TFT voltage‐programmed pixel circuits were fabricated using a standard a‐Si:H process at maximum temperature of 280°C in a bottom‐gate staggered source‐drain geometry. The 70‐ppi monochrome display consists of (48 × 4) × 48 subpixels of 92 ×369 μm each, with an aperture ratio of 48%. The a‐Si:H TFT pixel circuits drive top‐emitting green electrophosphorescent OLEDs to a peak luminance of 2000 cd/m2.  相似文献   

10.
By applying the curve‐type thin film transistor (TFT) with longitudinal strain, TFT parameters do change little down to the 2R bending. The mobility variation range reduces down to 4% compared with 28% of the line‐type channel with transverse strain. The smaller variation is preferred for a high quality display. We clarified that majority carrier's effective mass and scattering rate are dominant factors influencing the bended TFT's performance, which can be controlled by the strain orientation and channel shape. This understanding and improvement was embedded in the 5.8″ flexible QHD active matrix organic light emitting diode panel with multi edge curvature of Galaxy S8. Through this achievement, we made our flexible premium active matrix organic light emitting diode panels more performable, reliable, and highly productive in small R bending circumstance.  相似文献   

11.
Abstract— The characteristics of OLED backplanes including the intrinsic properties of a‐Si TFTs and LTPS TFTs will be reviewed. While LTPS TFTs reveal satisfactory stability in AMOLED‐display applications, a‐Si AMOLEDs show better uniformity and are capable of driving OLEDs. However, the stability of a‐Si TFTs under long‐term operation is still unacceptable and remains to be the key issue constraining the commercialization of a‐Si TFT AMOLEDs.  相似文献   

12.
In this work, a comparative study of electrical properties and gate‐bias stress stability between direct current (DC)‐sputtered and radio frequency (RF)‐sputtered amorphous indium–gallium–zinc oxide thin film transistors (a‐IGZO TFTs) is conducted. The RF‐sputtered a‐IGZO TFTs show higher field‐effect mobility and steeper sub‐threshold slope. The DC‐sputtered ones show a better uniformity of threshold voltage, enhanced stability under both positive bias stress and negative bias illumination stress. The X‐ray photoelectron spectroscopy characterization of the a‐IGZO films reveals that the concentration of oxygen vacancies and electron density in the RF‐sputtered a‐IGZO film is higher than that in the DC‐sputtered one, which probably accounts for the differences of electrical properties between the RF‐sputtered and DC‐sputtered a‐IGZO TFTs.  相似文献   

13.
Abstract— Low‐temperature deposited a‐Si:H TFTs have been successfully fabricated on colorless polyimide (CPI) substrate for flexible‐display applications. A serious degradation in threshold voltage was observed after applying external thermal stress. The threshold‐voltage shift saturates after applying several thermal stress cycles. In addition, the TFTs show instability under long periods of thermal stress with fixed temperature. This phenomenon was composed of thermally induced traps and substrate‐expansion‐induced mechanical stress. Finally, the a‐Si:H TFT backplane fabricated on a PI substrate at low temperature has been successfully demonstrated for flexible AMLCDs.  相似文献   

14.
Abstract— An inorganic‐dominated silica/polyimide (PI) hybrid film has been successfully developed for the fabrication of flexible AMOLEDs. The existence of networks between silica particles in the PI matrix have been confirmed by 3‐D tomography, respectively. The inorganic—organic hybrid film was achieved by roll‐type processing with a variety of attractive properties, such as low coefficient of thermal expansion (CTE, 20 ppm/°C), high transmittance (within the wavelength range of 400–700 nm), excellent flexibility, and high Young's modulus. Additionally, a flexible color‐filter, an AMEPD, and a flexible touch film were fabricated on hybrid film.  相似文献   

15.
Abstract— A 14.1‐in.‐diagonal backplane employing hydrogenated amorphous‐silicon thin‐film transistors (a‐Si:H TFTs) was fabricated on a flexible stainless‐steel substrate. The TFTs exhibited a field‐effect mobility of 0.54 cm2/V‐sec, a threshold voltage of 1.0 V, and an off‐current of 10?13 A. Most of the electrical characteristics were comparable to those of the TFTs fabricated on glass substrates. To increase the stability of a‐Si:H TFTs fabricated on stainless‐steel substrate, the specimens were thermally annealed at 230°C. The field‐effect mobility was reduced to 71% of the initial value because of the strain of the released hydrogen atoms and residual compressive stress in a‐Si:H TFT under thermal annealing at 230°C.  相似文献   

16.
We present a qHD (960 × 540 with three sub‐pixels) top‐emitting active‐matrix organic light‐emitting diode display with a 340‐ppi resolution using a self‐aligned IGZO thin‐film transistor backplane on polyimide foil with a humidity barrier. The back plane process flow is based on a seven‐layer photolithography process with a CD = 4 μm. We implement a 2T1C pixel engine and use a commercial source driver IC made for low‐temperature polycrystalline silicon. By using an IGZO thin‐film transistor and leveraging the extremely low off current, we can switch off the power to the source and gate driver while maintaining the image unchanged for several minutes. We demonstrate that, depending on the image content, low‐refresh operation yields reduction in power consumption of up to 50% compared with normal (continuous) operation. We show that with the further increase in resolution, the power saving through state retention will be even more significant.  相似文献   

17.
Abstract— The effects of gate‐bias stress, drain‐bias stress, and temperature on the electrical parameters of amorphous‐indium gallium zinc oxide (a‐IGZO) thin‐film transistors have been investigated. Results demonstrate that the devices suffer from threshold‐voltage instabilities that are recovered at room temperature without any treatments. It is suggested that these instabilities result from the bias field and temperature‐assisted charging and discharging phenomenon of preexisting traps at the near‐interface and the a‐IGZO channel region. The experimental results show that applying a drain‐bias stress obviously impacts the instability of a‐IGZO TFTs; however, the instability caused by drain bias is not caused by hot‐electron generation as in conventional MOSFETs. And the degradation trend is affected by thermally activated carriers at high temperature.  相似文献   

18.
Choosing a suitable bending structure is an important way to optimize flexible AMOLED. In this article, we proposed and established a drop-shape model through nonlinear finite element analysis software, comparing it with the “U”-shaped bending model. The mechanical stress conditions under different bending radius are analyzed and compared. Aiming to find a better module folding track, we output the influence of the bending radius on the stress and strain of the device layer, so that these data and research can provide reliable support for future material selection and structural optimization. The super-elastic and viscoelastic behaviors of optically clear adhesive are described by polynomial reduced integral and Prony series model, respectively. Both U-shaped various layers of film and overall flexible screen module strains increase fast with the decreasing of bending radius and smaller radius will increase the fatigue damage risk. The stress and strain of the drop shape did not change significantly with the decrease of the radius. During the bending process, the most stressed part appears in the outermost TP layer. In a small radius, it can be optimized from a curved structure, and water drop and wedge shapes can be prioritized.  相似文献   

19.
In this study, we have compared the performance of self‐aligned a‐IGZO thin‐film transistors (TFTs) whereby the source/drain (S/D) region's conductivity enhanced in three different ways, that is, using SiNx interlayer plasma (hydrogen diffusion), using calcium (Ca as reducing metal) and using argon plasma (changing the atomic ratio). All these TFTs show comparable characteristics such as field‐effect mobility (μFE) of over 10.0 cm2/(V.s), sub‐threshold slope (SS‐1) of 0.5 V/decade, and current ratio (ION/IOFF) over 108. However, under negative‐bias‐illumination‐stress (NBIS), all these TFTs showed strong degradation. We attributed this NBIS stability issue to the exposed S/D regions and changes in the conductivity of S/D contact regions. The hydrogen plasma‐treated TFTs showed the worst NBIS characteristics. This is linked to increased hydrogen diffusion from the S/D contact regions to the channel.  相似文献   

20.
Abstract— A high‐performance bottom‐contact organic‐thin‐film transistor (OTFT) array on plastic using a self‐organized process has been developed. The effect of octadecyltrichlorosilane (OTS) treatment on the poly‐4‐vinylphenol (PVP) gate insulator on the performance of OTFT on plastic has been studied. The OTFT without OTS exhibited a field‐effect mobility of 0.1‐cm2/V‐sec on/off current ratio of >107. On the other hand, the OTFT with OTS treatment exhibited a field‐effect mobility of 1.3 cm2/V‐sec and an on/off current ratio of >108. This is mainly due to the enhancement in grain size from less than 10 μm to more than 20 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号