首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yinnian He  Kaitai Li 《Computing》2005,74(4):337-351
In this article, the two-level stabilized finite element formulations of the two-dimensional steady Navier–Stokes problem are analyzed. A macroelement condition is introduced for constructing the local stabilized formulation of the steady Navier–Stokes problem. By satisfying this condition the stability of the Q1P0 quadrilateral element and the P1P0 triangular element are established. Moreover, the two-level stabilized finite element methods involve solving one small Navier–Stokes problem on a coarse mesh with mesh size H, a large Stokes problem for the simple two-level stabilized finite element method on a fine mesh with mesh size h=O(H2) or a large general Stokes problem for the Newton two-level stabilized finite element method on a fine mesh with mesh size h=O(|log h|1/2H3). The methods we study provide an approximate solution (uh,ph) with the convergence rate of same order as the usual stabilized finite element solution, which involves solving one large Navier–Stokes problem on a fine mesh with mesh size h. Hence, our methods can save a large amount of computational time.  相似文献   

2.
Á. Baran  G. Stoyan 《Computing》2007,79(1):1-21
We consider the non-conforming Gauss-Legendre finite element family of any even degree k≥4 and prove its inf-sup stability without assumptions on the grid. This family consists of Scott-Vogelius elements where appropriate k-th-degree non-conforming bubbles are added to the velocities – which are trianglewise polynomials of degree k.  相似文献   

3.
We study two-level additive Schwarz preconditioners for the h-p version of the Galerkin boundary element method when used to solve hypersingular integral equations of the first kind, which arise from the Neumann problems for the Laplacian in two dimensions. Overlapping and non-overlapping methods are considered. We prove that the non-overlapping preconditioner yields a system of equations having a condition number bounded by   where H i is the length of the i-th subdomain, h i is the maximum length of the elements in this subdomain, and p is the maximum polynomial degree used. For the overlapping method, we prove that the condition number is bounded by   where δ is the size of the overlap and H=max i H i . We also discuss the use of the non-overlapping method when the mesh is geometrically graded. The condition number in that case is bounded by clog2 M, where M is the degrees of freedom. Received October 27, 2000, revised March 26, 2001  相似文献   

4.
G. Matthies  L. Tobiska 《Computing》2002,69(2):119-139
 One of the most popular pairs of finite elements for solving mixed formulations of the Stokes and Navier–Stokes problem is the Q k −P k−1 disc element. Two possible versions of the discontinuous pressure space can be considered: one can either use an unmapped version of the P k−1 disc space consisting of piecewise polynomial functions of degree at most k−1 on each cell or define a mapped version where the pressure space is defined as the image of a polynomial space on a reference cell. Since the reference transformation is in general not affine but multilinear, the two variants are not equal on arbitrary meshes. It is well-known, that the inf-sup condition is satisfied for the first variant. In the present paper we show that the latter approach satisfies the inf-sup condition as well for k≥2 in any space dimension. Received January 31, 2001; revised May 2, 2002 Published online: July 26, 2002  相似文献   

5.
L. Guo  H. Chen 《Computing》2006,77(2):205-221
In this paper, an H1-Galerkin mixed finite element method is proposed for the 1-D regularized long wave (RLW) equation ut+ux+uuxδuxxt=0. The existence of unique solutions of the semi-discrete and fully discrete H1-Galerkin mixed finite element methods is proved, and optimal error estimates are established. Our method can simultaneously approximate the scalar unknown and the vector flux effectively, without requiring the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.  相似文献   

6.
We consider weakly singular integral equations of the first kind on open surface pieces Γ in ℝ3. To obtain approximate solutions we use theh-version Galerkin boundary element method. Furthermore we introduce two-level additive Schwarz operators for non-overlapping domain decompositions of Γ and we estimate the conditions numbers of these operators with respect to the mesh size. Based on these operators we derive an a posteriori error estimate for the difference between the exact solution and the Galerkin solution. The estimate also involves the error which comes from an approximate solution of the Galerkin equations. For uniform meshes and under the assumption of a saturation condition we show reliability and efficiency of our estimate. Based on this estimate we introduce an adaptive multilevel algorithm with easily computable local error indicators which allows direction control of the local refinements. The theoretical results are illustrated by numerical examples for plane and curved surfaces. Supported by the German Research Foundation (DFG) under grant Ste 238/25-9.  相似文献   

7.
As a first step to developing mathematical support for finite element approximation to the large eddies in fluid motion we consider herein the Stokes problem. We show that the local average of the usual approximate flow field u h over radius δ provides a very accurate approximation to the flow structures of O(δ) or greater. The extra accuracy appears for quadratic or higher velocity elements and degrades to the usual finite element accuracy as the averaging radius δ→h (the local meshwidth). We give both a priori and a posteriori error estimates incorporating this effect. Received December 3, 1999; revised October 16, 2000  相似文献   

8.
Natalia Kopteva 《Computing》2001,66(2):179-197
We consider two convection-diffusion boundary value problems in conservative form: for an ordinary differential equation and for a parabolic equation. Both the problems are discretized using a four-point second-order upwind space difference operator on arbitrary and layer-adapted space meshes. We give ɛ-uniform maximum norm error estimates O(N −2ln2 N(+τ)) and O(N −2(+τ)), respectively, for the Shishkin and Bakhvalov space meshes, where N is the space meshnodes number, τ is the time meshinterval. The smoothness condition for the Bakhvalov mesh is replaced by a weaker condition. Received December 14, 1999; revised September 13, 2000  相似文献   

9.
B. Nkemzi 《Computing》2006,76(1-2):11-39
This paper is concerned with a priori error estimates and convergence analysis of the Fourier-finite-element solutions of the Neumann problem for the Lamé equations in axisymmetric domains with reentrant edges. The Fourier-FEM combines the approximating Fourier method with respect to the rotational angle using trigonometric polynomials of degree N (N→∞), with the finite element method on the plane meridian domain of with mesh size h (h→0) for approximating the Fourier coefficients. The asymptotic behavior of the solution near reentrant edges is described by singularity functions in non-tensor product form and treated numerically by means of finite element method on locally graded meshes. For the rate of convergence of the combined approximations in is proved to be of the order   相似文献   

10.
《国际计算机数学杂志》2012,89(9):2021-2038
In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional time-fractional Fisher's equation, which is obtained from the standard one-dimensional Fisher's equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0<α<1). The proposed LDG is based on the LDG finite element method for space and finite difference method for time. We prove that the method is stable, and the numerical solution converges to the exact one with order O(hk+12?α), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The numerical experiments reveal that the LDG is very effective.  相似文献   

11.
In this paper, we analyze the streamline diffusion finite element method for one dimensional singularly perturbed convection-diffusion-reaction problems. Local error estimates on a subdomain where the solution is smooth are established. We prove that for a special group of exact solutions, the nodal error converges at a superconvergence rate of order (ln ε −1/N)2k (or (ln N/N)2k ) on a Shishkin mesh. Here ε is the singular perturbation parameter and 2N denotes the number of mesh elements. Numerical results illustrating the sharpness of our theoretical findings are displayed.  相似文献   

12.
We present some two-level non-overlapping additive and multiplicative Schwarz methods for a discontinuous Galerkin method for solving the biharmonic equation. We show that the condition numbers of the preconditioned systems are of the order O( H 3/h 3) for the non-overlapping Schwarz methods, where h and H stand for the fine mesh size and the coarse mesh size, respectively. The analysis requires establishing an interpolation result for Sobolev norms and Poincaré–Friedrichs type inequalities for totally discontinuous piecewise polynomial functions. It also requires showing some approximation properties of the multilevel hierarchy of discontinuous Galerkin finite element spaces.This revised version was published online in July 2005 with corrected volume and issue numbers.  相似文献   

13.
《国际计算机数学杂志》2012,89(16):2224-2239
In this paper, we investigate the L -error estimates of the numerical solutions of linear-quadratic elliptic control problems by using higher order mixed finite element methods. The state and co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order k (k≥1). Optimal L -error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for optimal control problems.  相似文献   

14.
G. Matthies  L. Tobiska 《Computing》2001,66(4):343-364
We consider the streamline-diffusion finite element method with finite elements of lowest order for solving convection-diffusion problems. Our investigations cover both conforming and nonconforming finite element approximations on triangular and quadrilateral meshes. Although the considered finite elements are of the same interpolation order their stability and approximation properties are quite different. We give a detailed overview on the stability and the convergence properties in the L 2- and in the streamline–diffusion norm. Numerical experiments show that often the theoretical predictions on the convergence properties are sharp. Received December 7, 1999; revised October 5, 2000  相似文献   

15.
J. K. Kraus  C. W. Brand 《Computing》2000,65(2):135-154
We investigate multilevel incomplete factorizations of M-matrices arising from finite difference discretizations. The nonzero patterns are based on special orderings of the grid points. Hence, the Schur complements that result from block elimination of unknowns refer to a sequence of hierarchical grids. Having reached the coarsest grid, Gaussian elimination yields a complete decomposition of the last Schur complement. The main focus of this paper is a generalization of the recursive five-point/nine-point factorization method (which can be applied in two-dimensional problems) to matrices that stem from discretizations on three-dimensional cartesian grids. Moreover, we present a local analysis that considers fundamental grid cells. Our analysis allows to derive sharp bounds for the condition number associated with one factorization level (two-grid estimates). A comparison in case of the Laplace operator with Dirichlet boundary conditions shows: Estimating the relative condition number of the multilevel preconditioner by multiplying corresponding two-grid values gives the asymptotic bound O(h −0.347) for the two- respectively O(h −4/5) for the three-dimensional model problem. Received October 19, 1998; revised September 27, 1999  相似文献   

16.
This paper develops and analyzes finite element Galerkin and spectral Galerkin methods for approximating viscosity solutions of the fully nonlinear Monge-Ampère equation det (D 2 u 0)=f (>0) based on the vanishing moment method which was developed by the authors in Feng and Neilan (J. Sci. Comput. 38:74–98, 2009) and Feng (Convergence of the vanishing moment method for the Monge-Ampère equation, submitted). In this approach, the Monge-Ampère equation is approximated by the fourth order quasilinear equation −εΔ2 u ε +det D 2 u ε =f accompanied by appropriate boundary conditions. This new approach enables us to construct convergent Galerkin numerical methods for the fully nonlinear Monge-Ampère equation (and other fully nonlinear second order partial differential equations), a task which has been impracticable before. In this paper, we first develop some finite element and spectral Galerkin methods for approximating the solution u ε of the regularized problem. We then derive optimal order error estimates for the proposed numerical methods. In particular, we track explicitly the dependence of the error bounds on the parameter ε, for the error ue-uehu^{\varepsilon}-u^{\varepsilon}_{h}. Due to the strong nonlinearity of the underlying equation, the standard error estimate technique, which has been widely used for error analysis of finite element approximations of nonlinear problems, does not work here. To overcome the difficulty, we employ a fixed point technique which strongly makes use of the stability property of the linearized problem and its finite element approximations. Finally, using the Argyris finite element method as an example, we present a detailed numerical study of the rates of convergence in terms of powers of ε for the error u0-uheu^{0}-u_{h}^{\varepsilon}, and numerically examine what is the “best” mesh size h in relation to ε in order to achieve these rates.  相似文献   

17.
P. Houston  Endre Süli 《Computing》2001,66(2):99-119
This paper is devoted to the a priori error analysis of the hp-version of a streamline-diffusion finite element method for partial differential equations with nonnegative characteristic form. This class of equations includes second-order elliptic and parabolic problems, first-order hyperbolic problems and second-order problems of mixed elliptic-parabolic-hyperbolic type. We derive error bounds which are simultaneously optimal in both the mesh size h and the spectral order p. Numerical examples are presented to confirm the theoretical results. Received October 28, 1999; revised May 26, 2000  相似文献   

18.
P. Knobloch 《Computing》2006,76(1-2):41-54
We consider a recently introduced triangular nonconforming finite element of third-order accuracy in the energy norm called Pmod3 element. We show that this finite element is appropriate for approximating the velocity in incompressible flow problems since it satisfies an inf-sup condition for discontinuous piecewise quadratic pressures.  相似文献   

19.
In this paper, we discuss a discontinuous Galerkin finite (DG) element method for linear free surface gravity waves. We prove that the algorithm is unconditionally stable and does not require additional smoothing or artificial viscosity terms in the free surface boundary condition to prevent numerical instabilities on a non-uniform mesh. A detailed error analysis of the full time-dependent algorithm is given, showing that the error in the wave height and velocity potential in the L2-norm is in both cases of optimal order and proportional to O(Δt2+hp+1), without the need for a separate velocity reconstruction, with p the polynomial order, h the mesh size and Δt the time step. The error analysis is confirmed with numerical simulations. In addition, a Fourier analysis of the fully discrete scheme is conducted which shows the dependence of the frequency error and wave dissipation on the time step and mesh size. The algebraic equations for the DG discretization are derived in a way suitable for an unstructured mesh and result in a symmetric positive definite linear system. The algorithm is demonstrated on a number of model problems, including a wave maker, for discretizations with accuracy ranging from second to fourth order.This revised version was published online in July 2005 with corrected volume and issue numbers.  相似文献   

20.
In this paper we address several issues arising from a singularly perturbed fourth order problem with small parameter ε. First, we introduce a new family of non-conforming elements. We then prove that the corresponding finite element method is robust with respect to the parameter ε and uniformly convergent to order h 1/2. In addition, we analyze the effect of treating the Neumann boundary condition weakly by Nitsche’s method. We show that such treatment is superior when the parameter ε is smaller than the mesh size h and obtain sharper error estimates. Such error analysis is not restricted to the proposed elements and can easily be carried out to other elements as long as the Neumann boundary condition is imposed weakly. Finally, we discuss the local error estimates and the pollution effect of the boundary layers in the interior of the domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号