首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the dairy industry, exopolysaccharides (EPS) contribute to improving the texture and viscosity of cheese and yoghurt and also receive increasing attention because of their beneficial properties for health. For lactic acid bacteria, the production of EPS is well studied. However, for dairy propionibacteria the biosynthesis of EPS is poorly documented. A polysaccharide synthase-encoding gene was identified in the genome of Propionibacterium freudenreichii subsp. shermanii TL 34 (CIP 103027). This gene best aligns with Tts, the polysaccharide synthase gene of Streptococcus pneumoniae type 37 that is responsible for the production of a beta-glucan capsular polysaccharide. PCR amplification showed the presence of an internal fragment of this gene in twelve strains of P. freudenreichii subsp. shermanii with a ropy phenotype in YEL+ medium. The gene sequence is highly conserved, as less than 1% of nucleotides differed among the 10 strains containing the complete gtf gene. The same primers failed to detect the gene in Propionibacterium acidipropionici strain TL 47, which is known to excrete exopolysaccharides in milk. The presence of (1-->3, 1-->2)-beta-d-glucan capsule was demonstrated for 7 out of 12 strains by agglutination with a S. pneumoniae-type 37-specific antiserum. The presence of mRNA corresponding to the gene was detected by RT-PCR in three strains at both exponential and stationary growth phases. This work represents the first identification of a polysaccharide synthase gene of P. freudenreichii, and further studies will be undertaken to elucidate the role of capsular EPS.  相似文献   

2.
Antifungal effect of dairy propionibacteria--contribution of organic acids   总被引:5,自引:0,他引:5  
Large amounts of food and feed are lost every year due to spoilage by moulds and yeasts. Biopreservation, i.e. the use of microorganisms as preservatives instead of chemicals, has gained increased interest. Lactic acid bacteria and propionibacteria might be particularly useful due to their important role in many food fermentations. Knowledge of the antifungal effects of the organic acids produced by these bacteria is necessary to understand their inhibitory activity. We evaluated the antifungal activity of the type strains of five dairy propionibacteria, Propionibacterium acidipropionici, P. jensenii, P. thoenii, P. freudenreichii subsp. freudenreichii and P. freudenreichii subsp. shermanii against eight food- and feedborne moulds and yeasts. A dual culture system assayed the inhibitory activity on three different agar media, sodium lactate (SL), de Man Rogosa Sharp (MRS) and MRS without acetate (MRS-ac). The amounts of organic acids produced during growth of propionibacteria in liquid SL, MRS and MRS-ac were also determined. The minimal inhibitory concentration (MIC) values of propionic, acetic and lactic acid were established for all fungi at pH 3, 5 and 7. Propionic acid, followed by acetic acid, was the most potent antifungal acid. Inhibition at pH 7 generally required concentrations above 500 mM for all three acids, at pH 5 the MIC values for propionic and acetic acids were 20-120 mM and above 500 mM for lactic acid. At pH 3, the MIC values were, with one exception, below 10 mM for both propionic and acetic acid and above 160 mM for lactic acid. The yeast Pichia anomala was the fungus most resistant to organic acids. The propionibacteria exhibited a pronounced species variation in antifungal activity on MRS (+/-acetate) agar, with P. thoenii being the most potent. Four of the five propionibacteria species produced more propionic and acetic acid in liquid SL medium than in MRS (+/-acetate) broth. However, when SL agar was used as the growth medium, none of the propionibacteria inhibited fungal growth.  相似文献   

3.
In this study, a total of forty‐five strains of lactobacilli and streptococci were determined exopolysaccharide (EPS) production in skim milk and Man Rogosa and Sharpe (MRS)/M17 medium, viscosity and proteolytic activity. The exopolysaccharide production by lactobacilli strains during growth in MRS medium was twenty‐one to 211 mg L?1, while in skim milk was to thirty‐six to 315 mg L?1. The EPS production by streptococci strains during growth in M17 medium was sixteen to 114 mg L?1, while in skim milk was to twenty‐four to 140 mg L?1. The EPS production of strains was lower in MRS/M17 medium than skim milk. Results showed that it was not clear correlation between the viscosity and EPS production of some strains. All strains were shown proteolytic activity. Positive correlations between exopolysaccharide production and proteolytic activity in skim milk were found some strains of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. These results indicated that the high exocellular protease‐producing strains can produce high EPS in skim milk. The monomer compositions of the EPSs formed by selected five strains were analysed. Mannose dominated (99–100%) on the EPS produced by L. delbrueckii subsp. bulgaricus and S. thermophilusstrains (except L. delbrueckii subsp. bulgaricus 22) in skim milk and MRS/M17 medium. Besides, the EPSs of strains in skim milk contained small amount of lactose.  相似文献   

4.
Genetic manipulation system in propionibacteria   总被引:2,自引:0,他引:2  
Members of the genus Propionibacterium are widely used in the production of vitamin B12, tetrapyrrole compounds, and propionic acid as well as in probiotic and cheese industries. Shuttle vectors were developed in propionibacteria using replicons from endogenous plasmids in Propionibacterium and Escherichia coli and an appropriate selection marker. The efficient transformation was achieved using the shuttle vector prepared from Propionibacterium freudenreichii to overcome the high restriction modification system in propionibacteria. Expression vectors with native promoters for use in propionibacteria were also developed. Using this system, cholesterol oxidase, which is used as a diagnostic enzyme, was produced in P. freudenreichii. Genes involved in 5-aminolevulinic acid (ALA) and vitamin B12 biosynthesis in propionibacteria were isolated. ALA in propionibacteria could be synthesized via both the C4 pathway (condensation of glycine and succinyl CoA) and the C5 pathway (from glutamate). The hemA gene encoding ALA synthase from Rhodobacter spheroides, was overexpressed and ALA accumulated in P. freudenreichii. Thus, the genetic manipulation systems in propionibacteria will facilitate genetic studies of probiotics and the vitamin B12 biosynthetic pathway.  相似文献   

5.
Production of a bifidogenic growth stimulator (BGS) by propionic acid bacteria was investigated under anaerobic and aerobic culture conditions. To measure the concentration of extracellular BGS produced by propionic acid bacteria, we evaluated the effects of bioassay conditions using Bifidobacterium longum as a test microorganism on the formation of a growth-stimulation zone. The diameter of the growth-stimulation zone was significantly affected by both the component concentrations and the pH of a bioassay medium. The optimum component concentrations and pH of a bioassay medium were one-half of the normal values and 8.5, respectively. Using the bioassay method, we can measure the concentration of BGS produced by propionic acid bacteria ranging in concentrations from 0.1 microg/l to 1 mg/l using 1,4-dihydroxy-2-naphthoic acid (DHNA) and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as standards. Of six dairy propionic acid bacterial strains tested, the four strains (Propionibacterium freudenreichii ET-3, P. shermanii PZ-3, P. acidipropionici JCM 6432, and P. jensenii JCM 6433) produced BGS at a concentration range of 4-23 mg/l under the anaerobic culture conditions. Analysis of high performance liquid chromatography (HPLC) showed that more than 70% of total BGS produced in supernatant samples was DHNA and no ACNQ was produced by the strains. The effect of oxygen supply on BGS production was investigated for the four BGS-producing strains. The aerobic conditions exerted in positive effects on BGS production by only P. acidipropionici JCM 6432. The concentration of BGS obtained in the aerobic cultivation of P. acidipropionici JCM 6432 was 1.3-fold than that in anaerobic cultivation. Different properties (BGS production as well as cell growth and glucose metabolism) occurring in response to the aerobic conditions were observed, depending on the propionic acid bacterial strain used. This paper is the first report on BGS production by propionibacterial strains except for P. freudenreichii.  相似文献   

6.
从新鲜生牛奶中分离筛选产丙酸较高的菌株,经形态学特征、生理生化及糖发酵试验、16S rDNA基因序列同源性分析以及多位点序列分型(multilocus sequence typing)等实验鉴定该菌株,分析了其对不同碳源的利用率及产酸情况,并从溶血性试验及抗生素抗性试验方面来评估该菌株的安全性。结果表明,从4批次样品中共分离获得54株能产丙酸的菌株,其中一株菌的丙酸产量达到7.38 g/L,为费氏丙酸杆菌(Propionibacterium freudenreichii)。比较了葡萄糖和甘油对其生长的影响,发现其对葡萄糖的利用率大于对甘油的利用率,在含葡萄糖的培养基中于30 ℃厌氧培养120 h后丙酸产量达到7.38 g/L。该菌株无溶血性,对卡那霉素等氨基糖苷类抗生素有耐药性,对氨苄西林、万古霉素、氯霉素、克林霉素、四环素敏感,对红霉素中介。综上,费氏丙酸杆菌B1具有一定的潜在应用价值。  相似文献   

7.
Fifteen organisms were isolated from Tibetan kefir. Six of them were exopolysaccharide (EPS)‐producing strains cultured in skim milk medium, which included two yeasts (Kazachstania unispora), one acetic acid bacterium (Acetobacter okinawensis) and three lactic acid bacteria (Leuconostoc pseudomesenteroides). The protein oxidative damage protection assay revealed that preincubation of exopolysaccharides (EPSs) could restore the levels of protein oxidation in a dose‐dependent manner. The SEM images indicated that there were great differences in the microstructures and surface morphologies among the EPSs. The GC analysis of the EPSs showed that all of the EPSs were composed of more than one kind of monosaccharide.  相似文献   

8.
Strains of potentially probiotic lactobacilli, propionibacteria, leuconostoc, lactococcus, enterococcus, and pediococcus, were tested for their ability to convert linoleic acid to conjugated linoleic acid (CLA). Growth and CLA production were followed during incubation for 48 h in reconstituted skim milk containing 0.2% lipolysed sesame oil. Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc mesenteroides subsp. mesenteroides gave the highest CLA production. Also, the effect of lipolysed oil concentration on the growth and CLA production of six strains were studied in medium containing 0.0–1% lipolysed oil. Leuconostoc mesenteroides subsp. mesenteroides and Lac. lactis subsp. lactis biovar diacetylactis gave maximum dienes in medium containing 0.6% and 0.8% lipolysed oil respectively.  相似文献   

9.
费氏丙酸杆菌代谢物是一种新型的天然防腐剂。试验研究氮源、碳源表面活性剂和温度对费氏丙酸杆菌代谢物抑菌活性的影响。结果表明,葡萄糖是其最适碳源,抑菌活性最高,为19AU/mL,玉米浆为最适氮源,抑菌活性为17.4AU/mL。0.1%的Tween80能提高代谢物的抑菌活性,最高为23.6AU/ mL。产生丙酸杆菌代谢物的最适培养温度为30℃。  相似文献   

10.
Dairy propionibacteria are present in Graviera Kritis, a traditional Gruyère-type cheese made without added propionic starter. Ten isolated strains were identified by a combination of SDS-PAGE, species-specific PCR and according to their ability to ferment lactose. They were all found to belong to the Propionibacterium freudenreichii subsp. shermanii species. Because of the stressing Gruyère technology, which includes cooking at 52 to 53 degrees C their thermotolerance was investigated at 55 degrees C. Thermotolerant and thermosensitive strains were clearly discriminated. Interestingly, the reference strain CIP 103027 belongs to the sensitive subset. One sensitive strain, ACA-DC 1305 and one tolerant, ACA-DC 1451, were selected for further study and compared to CIP 103027. For the sensitive strains ACA-DC 1305 and CIP 103027, heat pre-treatment at 42 degrees C conferred thermoprotection of cells at the lethal temperature of 55 degrees C, while there was less effect on the tolerant ACA-DC 1451. No cross-protection of salt-adapted cells against heat stress was observed for none of the strains. Differential proteomic analysis revealed distinct but overlapping cell responses to heat stress between sensitive and tolerant strains. Thermal adaptation upregulated typical HSPs involved in protein repair or turnover in the sensitive one. In the tolerant one, a distinct subset of proteins was overexpressed, whatever the temperature used, in addition to HSPs. This included enzymes involved in propionic fermentation, amino acid metabolism, oxidative stress remediation and nucleotide phosphorylation. These results bring new insights into thermoprotection in propionibacteria and the occurrence of divergent phenotypes within a same subspecies.  相似文献   

11.
Dairy propionibacteria display probiotic properties which require high populations of live and metabolically active propionibacteria in the colon. In this context, the probiotic vector determines probiotic efficiency. Fermented dairy products protect propionibacteria against digestive stresses and generally contain a complex mixture of lactic and propionic acid bacteria. This does not allow the identification of dairy propionibacteria specific beneficial effects. The aim of this study was to develop a dairy product exclusively fermented by dairy propionibacteria. As they grow poorly in milk, we determined their nutritional requirements concerning carbon and nitrogen by supplementing milk ultrafiltrate (UF) with different concentrations of lactate and casein hydrolysate. Milk or UF supplemented with 50 mM lactate and 5 g L−1 casein hydrolysate allowed growth of all dairy propionibacteria studied. In these new fermented dairy products, dairy propionibacteria remained viable and stress-tolerant in vitro during minimum 15 days at 4 °C. The efficiency of milk fermented by the most tolerant Propionibacterium freudenreichii strain was evaluated in piglets. Viability and SCFA content in the colon evidenced survival and metabolic activity of P. freudenreichii. This work results in the design of a new food grade vector, which will allow preclinical and clinical trials.  相似文献   

12.
We have shown that the ability to produce trehalose is widespread within the genus Propionibacterium. Eighteen strains isolated from dairy sources were screened for trehalose synthesis; the effect of environmental conditions on trehalose production was evaluated in Propionibacterium freudenreichii ssp. shermanii NIZO B365, a strain that accumulated high amounts of this disaccharide. Lactose was the best carbohydrate source for trehalose production, whereas lactate, the substrate that led to the highest specific growth rate, was a poor precursor. Trehalose was consumed after exhaustion of the carbon source in the medium, suggesting its role as a reserve compound. The production of trehalose was not affected by lowering the growth temperature from 30 to 20 degrees C. On the other hand, the maximum trehalose accumulation increased from about 200 to 400 mg of trehalose/g of cell protein upon decreasing the pH from 7.0 to 4.7, by increasing the concentration of NaCl to 2% (w/v), or during growth under aerobic conditions (50% air saturation, 24 microM O(2), pH 7.0). In the absence of NaCl, trehalose accumulated concomitantly with growth, but an increase in salinity triggered a high trehalose production already in the early exponential growth phase. The data provide evidence for a dual function of trehalose as a reserve compound and as a stress-response metabolite. Moreover, P. freudenreichii ssp. shermanii NIZO B365 was able to produce high levels of trehalose in skim milk, which is promising for the implementation of fermented dairy products.  相似文献   

13.
Lactobacillus strains used in this study were isolated from village-type yogurt and raw milk. The isolates were identified as Lactobacillus delbrueckii subsp. bulgaricus by 16 s rDNA sequence analysis and API 50 CHL identification systems. The exopolysaccharide (EPS) production of the strains growth in skim milk were investigated. In addition sensitivity and insensitivity of these strains against domestic bacteriophages and nisin were examined. It was deduced that those strains which had relatively high EPS-producing capacity were insensitive against phages and nisin. Linear relationships were determined between EPS production of the bacteria and bacteriophage and nisin insensitivity of the bacteria.There was a negative correlation between EPS production quantity and phage and nisin sensitivity of the bacteria. Of all the strains, L. delbrueckii subsp bulgaricus B3 produced the highest EPS quantity, and it was insensitive against phages and nisin. Based on these results, it is suggested that L. delbrueckii subsp bulgaricus B3 can be used with the starter culture in dairy industry for stable and high-quality yogurt production.  相似文献   

14.
An important criterion to consider in the selection of strains for dietary adjuncts is the ability of the microorganisms to survive the severe conditions of acidity and bile concentrations usually found in the gastrointestinal tract. In the present work, we report the effects of digestions by artificial gastric and intestinal fluids on beta-galactosidase activity and survival of four strains of dairy propionibacteria previously selected by their bile tolerance and beta-galactosidase activity. The strains were exposed to artificial gastric juice at pH values between 2 and 7 and then subjected to artificial intestinal digestion. Both viability and beta-galactosidase activity were seriously affected at pH 2. Skim milk and Emmental cheese juice exerted a protective effect on the parameters tested. The trypsin present in the intestinal fluid inactivated the enzyme beta-galactosidase in strains of Propionibacterium freudenreichii but not in Propionibacterium acidipropionici. Moreover, the presence of bile salts enhanced the beta-galactosidase activity of these strains by permeabilization of the cells during the first hour of exposure. The intestinal transit rate confirmed the permanence of the bacteria in the intestine for long enough to be permeabilized. These results suggest that P. acidipropionici would be a good source of beta-galactosidase activity in the intestine. We also propose a practical and effective in vitro method as a tool of screening and selection of potential probiotic bacteria.  相似文献   

15.
Five strains of propionibacteria with 70-90% autolysis in sodium lactate broth (SLB) were studied by renaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Several lytic bands ranging in size between 25 and 143 kDa were detected by using propionibacteria cells or cell walls as substrate in the gel. Four Propionibacterium freudenreichii strains showed similar autolytic-enzyme profiles, consisting of two autolytic bands, one with molecular mass 162 kDa and one in the range 123-143 kDa. However, the Propionibacterium acidipropionici strain showed a completely different profile, consisting of 8 autolytic bands with molecular masses of 122, 97, 71, 55, 43, 39, 31, and 25 kDa. Lytic enzymes from P. freudenreichii INF-alpha, P. freudenreichii ISU P-59, P. freudenreichii ISU P-24, and P. freudenreichii ISU P-50 showed lytic activity against cells from all these four strains, but not against P. acidipropionici ATCC 4965. However, P. acidipropionici ATCC 4965 autolysed only its own cells. Effects of pH, temperature, and ions on autolytic activity were tested by renaturing SDS-PAGE and in buffer systems. Results from the SDS-PAGE electrophoresis showed optimal autolytic activity of P. acidipropionici ATCC 4965 at 37 degrees C and in the pH range 7 to 8.5 and of P. freudenreichii ISU P-59 at 20 degrees C and in the pH range 5 to 7. The autolytic activity of P. acidipropionici ATCC 4965 was extremely heat stable (100 degrees C, 2 h), in contrast to the lytic activity of P. freudenreichii ISU P-59, which was heat labile. The autolytic activities of P. acidipropionici ATCC 4965 were inhibited by divalent cations, however, the lytic activities of P. freudenreichii ISU P-59 were activated by Mn(2+), Ca(2+), and Co(2+). In buffer, optimum autolysis of P. acidipropionici ATCC 4965 was observed at pH 8.5 and at 40 degrees C. P. freudenreichii ISU P-59 showed optimum autolysis in buffer at pH 7.5 and at 30 degrees C.  相似文献   

16.
In a study of the evolution of conjugated linoleic acid (CLA) during cheese production, the influence of Emmental cheese processing on the CLA content and the CLA isomer composition was evaluated. The use of raw and thermised milk, changes of processing temperature and the effect of propionic acid bacteria (PAB) were investigated. The content of CLA in raw milk was 8.6 +/- 1.9 mg/g fat and in the ripened cheese at 70 d was 8.6 +/- 1.6 mg/g fat, under normal processing conditions. No changes in the CLA content and CLA isomer composition were observed during Emmental cheese manufacturing process. Changes in cooking and moulding temperatures did not influence the CLA content. CLA content of cheese made from microfiltered milk with two different Propionibacterium freudenreichii strains was very close to cheeses made without PAB. CLA levels seem to be stable in this type of dairy product under the conditions examined.  相似文献   

17.
Bifidobacterium adolescentis Int57 (Int57) and Propionibacterium freudenreichii subsp. shermanii ATCC 13673 (ATCC 13673) were grown either in coculture or as pure cultures in different media, such as cow's milk, soybean milk, and modified MRS medium. The viable cell counts of bacteria, changes in pH, concentrations of organic acids, and contents of various sugars were analyzed during incubation up to 7days. In soy milk, the survival of cocultured Int57 was six times higher than the monocultured cells, and ATCC 13673 cocultured with Int57 consumed 69.4% of lactic acid produced by Int57 at the end of fermentation. In cow's milk, coculture with ATCC 13673 increased the growth of Int57 from 24h until 120h by approximately tenfold and did not affect the survival of Int57 cells. After 96h of fermentation of modified MRS, the survival of ATCC 13673 cells cocultured with Int57 increased by 3.2- to 7.4-folds as compared with ATCC 13673 monoculture, whereas the growth of Int57 cells was unaffected. The growth and metabolic patterns of two strains during coculture showed noticeable differences between food grade media and laboratory media. The consumption of stachyose in soy milk during coculture of Int57 with ATCC 13673 was increased by more than twice compared with Int57 monoculture, and completed within 24h. The combinational use of Bifidobacterium and Propionibacterium could be applied to the development of fermented milk or soy milk products.  相似文献   

18.
19.
Fifteen strains of propionibacteria, isolated from dairy products, were screened for the production of bacteriocins. Propionibacterium thoenii 447 produced an antimicrobial peptide, thoeniicin 447, which acted bactericidal against Lactobacillus delbrueckii subsp. bulgaricus and bacteriostatic against Propionibacterium acnes. Thoeniicin 447 remained active after 15 min at 100 degrees C and after 30 min of incubation at pH 1-10. The peptide was inactivated when treated with pepsin, pronase, alpha-chymotrypsin, trypsin and proteinase K. Optimal bacteriocin production was detected during late exponential growth. The peptide was partially purified by ammonium sulfate precipitation, followed by SP-Sepharose cation exchange chromatography. The estimated size of thoeniicin 447, according to tricine-SDS-PAGE, is 6 kDa. Based on DNA sequencing, the mature peptide is 7130.20 Da in size and homologous to propionicin T1, produced by P. thoenii strain 419 (=NCFB 568(T)). Strain 447 is phenotypically different from strain 419 and belongs to a separate ribotype cluster. To our knowledge, this is the first report of a bacteriocin from a Propionibacterium species active against P. acnes.  相似文献   

20.
通过添加控制丙酸浓度考查了费氏丙酸杆菌发酵生产VB12的过程中丙酸抑制细胞生长的浓度范围,在此基础上利用树脂对发酵过程中丙酸进行了选择性吸附后细胞的生长和脱氧腺苷钴胺素合成的变化。研究结果表明,丙酸的浓度在10.0g/L时,对菌体细胞生长产生了明显的抑制。在丙酸浓度积累到10.0g/L之前,利用树脂对其吸附分离出2.5g/L的丙酸后,生物量提高了37.5%,脱氧腺苷钴胺素产量提高了50.0%。该实验为实现丙酸的在线分离和丙酸/VB12高效联产的新型耦合发酵工艺提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号