共查询到20条相似文献,搜索用时 15 毫秒
1.
冷轧平整板形控制工艺探讨 总被引:1,自引:0,他引:1
介绍了平整过程中影响板形缺陷的因素,提出了解决平整过程中板形缺陷的主要因素是轧辊的辊型控制,并分析指出了生产实际中可通过合适的原始辊型凸度、调整液压弯辊装置、倾斜轧辊以及调节轧制压力和带钢张力来改善平整板形的控制方法。 相似文献
2.
建立了薄带冷轧机的板形自动控制目标设定模型,它以轧后带钢的在线屈曲和后屈曲理论为板形生成的力学判据,以实测带钢温度横向分布为补偿,分别在203OCVC冷连轧机和1250HC冷轧机上运行成功。生产实绩证明其控制效果优于原用的引进模型,板形质量显著提高。 相似文献
3.
In specific condition, when wrapping angle of cold rolling strip covering surface of shape detecting roll dynamically changes, online radial compression of the shape detecting roll is changed too, and it seriously affects online shape detecting precision of cold strip. Based on the latest intelligent shape meter developed by Yanshan University, using PSO-BP neural network and actual working condition datum, the cold strip online dynamic wrapping angle compensation model is established, and successfully applied in 1250 mm 6-high cold mill, remarkable results are achieved. The error between calculated values and measured values of total tensions is within 3%. 相似文献
4.
5.
6.
基于几何关系和板形检测理论,建立了针对检测辊安装误差的在线板形信号误差补偿模型。结合轧机设备布局特点和工艺参数,针对固定包角和变包角两种安装方法,从水平误差和垂直误差2个方面,对在线板形信号进行综合误差的定量补偿。对于固定包角方式,检测辊安装精度的板形补偿量可设定为一常数;对于变包角方式,则需要根据变动态包角计算公式,在线实时计算动态补偿量。基于理论分析和工业实际数据,制定适合轧机自身特点的检测辊允许安装误差,才能最大限度地提高板形检测精度,使综合补偿后的板形曲线更真实地反映在线冷轧带钢的实际板形状况。以某1050冷轧机为例,其水平误差和垂直误差建议分别控制在0.03和0.05mm以内,才能满足基本的板形控制技术要求。 相似文献
7.
Shape setup (SSU) system is the core technology for hot strip mill (HSM). A precise SSU system was used to improve the strip quality for HSM. The function of SSU, setup, and feedback was introduced. The main mathematical models of roll gap profile and longitudinal strain difference are set up. Strip profile allocation strategy was researched according to the SSU system of a domestic 1 700 mm HSM. The SSU system was put into practical use and the measurement results showed that strip flatness variation and strip profile variation could be controlled in target scope. 相似文献
8.
It is difficult to obtain the desired strip shape using Sendzimir rolling mills because small diameter work rolls can be easily deformed by the rolling force. To control the strip shape effectively, it is important to understand the relationship between the behavior of the shape actuator and the variation of the strip shape. A numerical model based on the contact element method was proposed for the prediction of strip shape. In this numerical model, the relationships between the actuating forces, the roll deflections, the thickness profiles of the entry and exit sides, and the strip shape were considered. The proposed numerical model for strip shape prediction was evaluated by computer simulation and experiment with respect to various AS-U roll and first intermediate roll positions. 相似文献
9.
根据轧制理论中的体积不变原理和平直度的基本定义,考虑来料板形的遗传影响,推导出了以入口和出口带钢相对凸度差表示的带钢平直度模型.该模型在连轧机参数优化设计和辊型配置优化设计系统中均得到应用,效果良好. 相似文献
10.
11.
针对本钢冷轧厂轧机的生产实际,在冷轧机压下率的分配、影响轧制稳定性因素、轧机自动方式的运用、板形仪及其它因素对带钢平直度的控制等几方面进行了优化和控制,提高了板形质量. 相似文献
12.
Development of Neural-Based Generalized Predictive Control System of Strip Shape for a Reversal 6-High Mill 总被引:1,自引:0,他引:1
To meet the challenge of internationalcompetition a rolling mill must be able to producehigh quality products effectively.As an importantpart of quality control and productivity increase,control of cross- sectional shape in cold rolling ofthin steel strip has become an important issue.Thecontrol issue is intractable because the process ishighly non- linear,depending on the coupling effectsof many process parameters such as variation of thestrip materials and their geometries,rolltemperature an… 相似文献
13.
14.
15.
It is a complicated problem for cold-rolled strip to improve asymmetric strip shape in strip production. A roll system and strip coupled model of six-high cold rolling mill was established with finite element method to estimate the effect of intermediate roll shifting, tilting, symmetric and asymmetric bending technologies on strip profile. To reduce asymmetric defects of strip shape as much as possible, some control strategies were proposed, including tilting and asymmetric bending of intermediate roll and work roll. The combinations of these three control strategies can effectively eliminate asymmetric strip shape defects. Finally, the closed-loop control model of asymmetric flatness at the last stand was given, and the flatness control system with the function of asymmetric strip shape control was also designed for cold tandem mill. 相似文献
16.
17.
Compensation Model For Shape Measuring of Cold Strip Rolling 总被引:4,自引:0,他引:4
The shape meter is interfered by some unavoidable factors in the process of cold strip shape measuring, so the measuring results can not reflect the ture shape and the measuring precision is low. In this paper, The influence of the measuring results is detailed analysed, which is influenced by the measuring error of strip edges、the transverse temperature difference of strip、the shape detection roller deflection and the shape of strip coil, The corresponding compensation models are established. And a cold strip mill is calculated as an example, gaines some disciplinarian cognitions. 相似文献
18.
The strip shape in the stainless steel process has made an issue of the strip quality. The objective of the shape control is to minimize the shape deviation and to maintain symmetrical shape patterns in the lateral direction. The method of the shape recognition employs the least square method. The shape deviation is controlled by the fuzzy shape controller (FSC). The experiments have been performed online for various stainless materials, thicknesses, and strip widths. The test results show very efficient performances in respect of stable target tracking and symmetrical and minimal fluctuation of the strip shape. 相似文献
19.
济钢1700 mm热连轧是新建投产的宽带钢生产线,其F2-F6精轧机组装备有工作辊弯辊和窜辊技术.针对这种典型机型,在大量有限元模拟计算的基础上,开发了相应的板形设定控制模型,包括工作辊综合辊形(初始辊形、磨损辊形和热辊形之和)计算模型、支承辊综合辊形计算模型、窜辊设定计算模型和弯辊力设定计算模型等.在经历了系统设计、程序编写、离线调试、在线调试后,板形设定控制模型投入稳定运行,所有考核规格的凸度控制精度超过96%.在同宽轧制长度超过70 km的轧制单位内,各机架弯辊力设定结果能够自动适应带钢厚度和钢种的变化,且凸度控制精度超过95%. 相似文献