首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The intravenous administration of the psychoactive constituent of marijuana, delta9-tetrahydrocannabinol (delta9-THC) (62.5-1000 microg/kg), and the synthetic cannabinoid agonist WIN 55212,2 (WIN) (62.5-500 microg/kg), produced a dose-related increase in the firing rate and burst firing in the majority of antidromically identified meso-prefrontal dopaminergic neurons. In a restricted number of neurons (n=4), WIN administration did not increase firing rate but produced an increment of bursting activity. These effects of the cannabinoids were reversed by the intravenous administration of SR 141716 A, a selective cannabinoid antagonist (1 mg/kg), per se ineffective to modify the electrical activity of dopaminergic neurons. The results indicate that stimulation of cannabinoid CB1 receptors produces an activation of meso-prefrontal dopaminergic transmission. Considering that supranormal stimulation of D1 dopamine receptors in the prefrontal cortex has been shown to impair working memory, the present results suggest that the negative effects of cannabinoids on cognitive processes might be related to the activation of dopaminergic transmission in the prefrontal cortex.  相似文献   

2.
The anatomical relationship between vagal afferents and brain nitric oxide synthase containing terminals in the nucleus tractus solitarii was studied by means of anterograde tracing combined with immunocytochemistry and immuno-electron microscopy. Biotinylated dextran amine was injected into the nodose ganglion with a glass micropipette. Four to eight days following the injection, regions of the nucleus tractus solitarii containing biotinylated dextran amine-labelled vagal afferents and those containing nitric oxide synthase-immunopositive terminals were congruent. Many neurons exhibiting nitric oxide synthase immunoreactivity were found within the biotinylated dextran amine-containing terminal field. However dense labeling of terminals with biotinylated dextran amine precluded determination if the terminals were nitric oxide synthase-immunoreactive. Therefore, we combined degeneration of vagal afferents after removal of one nodose ganglion with nitric oxide synthase immuno-electron microscopy. Axon terminals that possessed characteristic vesicle clusters and were partially or completely engulfed by glial processes were identified as degenerating vagal afferents. Degenerating axon terminals comprised 38% of the total axon terminals in the nucleus tractus solitarii in a sample of sections; and of the degenerating axon terminals, 67% were nitric oxide synthase-immunoreactive. Nitric oxide synthase immunoreactivity was present in 41% of the non-degenerating axon terminals. Prominent staining of dendrites for nitric oxide synthase immunoreactivity indicated that much of the nitric oxide synthase in the nucleus tractus solitarii is not derived from peripheral afferents. Of the total number of dendritic profiles sampled, half were nitric oxide synthase-immunoreactive. Our data support the hypothesis that nitric oxide or nitric oxide donors may be present in primary vagal afferents that terminate in the nucleus tractus solitarii. While this study confirms that vagal afferents contain brain nitric oxide synthase, it demonstrates for the first time that the majority of nitric oxide synthase immunoreactivity in the nucleus tractus solitarii is found in intrinsic structures in the nucleus. In addition, our data show that second or higher order neurons in the nucleus tractus solitarii may be nitroxidergic and receive both nitroxidergic and non-nitroxidergic vagal input.  相似文献   

3.
Vagal primary afferent neurons have their cell bodies located in the nodose (inferior) and jugular (superior) vagal ganglia and send terminals into the nucleus tractus solitarii (NTS) which lies in the dorsomedial medulla. The presence of glutamate (Glu)-containing neurons in the rat nodose ganglion was investigated using immunohistochemistry. Glu-immunoreactivity on nodose sections was found in neuronal perikarya and nerve fibers, but not in non-neuronal elements such as Schwann cells and satellite cells. Both immunoreactive and non-immunoreactive ganglion cells were observed. The immunoreactive ganglion cells amounted to about 60% of the nodose population. No specific intraganglionic localization was observed for the non-immunoreactive cells. Immunoreactive perikarya were slightly smaller than the non-immunoreactive ones, but no relationship was found between size and staining intensities of immunoreactive neurons. The present data indicate that immunodetectable Glu is present in a large population of vagal afferent neurons. They therefore add to a growing body of evidence suggesting that Glu may be the main neurotransmitter released by vagal afferent terminals within the nucleus tractus solitarii.  相似文献   

4.
A population of New Zealand White rabbits has been found to exhibit behavioral convulsions when given low intravenous doses of psychoactive cannabinoids of marijuana. The behavioral convulsions decrease in severity and then disappear after the long-term administration of delta9-tetrahydrocannabinol. The extreme sensitivity of these rabbits to the stimulant action of cannabinoids suggests that the population might serve as a model in studies of the stimulant action of cannabinoids.  相似文献   

5.
Neurophysiological and pharmacological evidence suggests that glutamate, gamma-aminobutyric acid and tachykinins (substance P and neurokinin A) each have a role in cardiovascular regulation in the nucleus tractus solitarii. This study describes the ultrastructural relationships between nerve terminals immunoreactive for these substances in the nucleus tractus solitarii of the cat using post-embedding immunogold (single and double) labelling techniques on sections of tissue embedded in LR White resin. The technique combines a high specificity of labelling with good ultrastructural and antigenic preservation. Glutamate-immunoreactive terminals, recognized by their high density of gold particle labelling compared to the mean tissue level of labelling, accounted for about 40% of all synaptic terminals in the region of the nucleus tractus solitarii analysed (medial, dorsal, interstitial, gelatinosus and dorsolateral subnuclei). They appeared to comprise several morphological types, but formed mainly asymmetrical synapses, most often with dendrites of varying size, and contained spherical clear vesicles together with fewer dense-cored vesicles. Substance P- and neurokinin A-immunoreactive terminals were fewer in number (9% of all terminals) but similar in appearance, with the immunoreaction restricted to the dense-cored vesicles. Analysis of serial- and double-labelled sections showed a co-existence of substance P and neurokinin A-immunoreactivity in 21% of glutamate-immunoreactive terminals. Immunoreactivity for gamma-aminobutyric acid was found in 33% of all terminals in the nucleus tractus solitarii. These predominantly contained pleomorphic vesicles and formed symmetrical synapses on dendrites and somata. Possible sites of axo-axonic contact by gamma-aminobutyric acid-immunoreactive terminals onto glutamate-or tachykinin-immunoreactive terminals were rare, but examples of adjacent glutamate and gamma-aminobutyric acid-immunoreactive terminals synapsing on the same dendritic profile were frequent. These results provide an anatomical basis for a gamma-aminobutyric acid mediated inhibition of glutamatergic excitatory inputs to the nucleus tractus solitarii at a post-synaptic level.  相似文献   

6.
The potential blockade of the neuropeptide Y (NPY) Y1 receptor agonist [Leu31,Pro34]NPY-induced modulation of the characteristics of alpha 2-adrenoceptor agonist [3H]p-aminoclonidine binding sites by a selective non-peptide NPY Y1 receptor antagonist BIBP3226, was studied in the nucleus tractus solitarii of the rat by means of quantitative receptor autoradiography. [Leu31,Pro34]NPY at a concentration of 10 nM significantly increased the Kd value of [3H]p-aminoclonidine binding sites in the nucleus tractus solitarii without influencing the Bmax, suggesting the existence of an antagonistic modulation by NPY Y1 receptors of alpha 2-adrenoceptors in the nucleus tractus solitarii. BIBP3226 at 100 nM fully blocked the [Leu31,Pro34]NPY-induced increase in Kd of the [3H]p-aminoclonidine binding sites. The present results therefore provide evidence, by use of a NPY Y1 receptor antagonist, for the existence of a NPY Y1/alpha 2 receptor interaction in the nucleus tractus solitarii.  相似文献   

7.
We delineated the functional role of Fos protein at the nucleus tractus solitarii in the manifestation of reduced baroreceptor reflex control of heart rate during hypertension, using spontaneously hypertensive rats (SHR), stroke-prone SHR, Wistar-Kyoto rats, or Sprague-Dawley rats. Microinjection into the bilateral nucleus tractus solitarii of an antisense oligonucleotide that targets against the initiation codon of c-fos mRNA significantly potentiated the baroreceptor reflex in response to 30 minutes of sustained increase in blood pressure. Of particular note was the restoration of both the impaired sensitivity and capacity of baroreceptor reflex in SHR and stroke-prone SHR to levels comparable to those in normotensive rats. Likewise, the number of Fos-immunoreactive nuclei evoked by the sustained increase in blood pressure in the caudal nucleus tractus solitarii of SHR and stroke-prone SHR was reduced, after this antisense c-fos treatment, to the basal level exhibited by the normotensive animals. Control treatment with the corresponding sense oligonucleotide, an antisense oligonucleotide that targets against a different portion of the coding sequence of the c-fos mRNA or artificial cerebrospinal fluid, on the other hand, elicited no discernible effect on either the baroreceptor reflex response or the induced expression of Fos protein in the nucleus tractus solitarii by baroreceptor activation. We also found that the basal level of Fos expression in the caudal nucleus tractus solitarii was significantly elevated in the SHR and stroke-prone SHR. Together, these novel findings suggest that an elevated expression of basal Fos protein in the NTS during hypertension may be associated with the dysfunction in baroreceptor reflex control of heart rate.  相似文献   

8.
Solid-phase microextraction (SPME) is applied to the determination of cannabidiol, delta 8-tetrahydrocannabinol (delta 8-THC), delta 9-tetrahydrocannabinol (delta 9-THC), and cannabinol in pure water and human saliva. The inherent extraction behavior of the cannabinoids in pure water is evaluated along with optimization of the method in human saliva. The commercially available poly(dimethylsiloxane) (PDMS) SPME fibers were found to be the best class for the cannabinoid analysis. Partition coefficients were found to be extremely large for all of the cannabinoids (log K > 4.0). Equilibrium times for the 7- and 30-micron PDMS fibers were 50 and 240 min, respectively. A shorter extraction time of 10 min with the 30-micron PDMS fiber may be used for multiple extractions from the same vial, thus conserving the sample necessary for analysis and speeding up the total analysis time. Recoveries for the cannabinoids in saliva, relative to pure water, were dramatically improved by a method developed in our laboratory involving addition of glacial acetic acid to the sample vial prior to performing SPME. Using this method, recoveries relative to SPME in pure water ranged from 21 to 47% depending on the cannabinoid. The linear range for spiked saliva samples was established at 5-500 ng/mL (r2 > 0.994) with precisions between 11 and 20% RSD. The ultimate level of detection by SPME for the cannabinoids in saliva was 1.0 ng/mL, with signal-to-noise values of > or = 12. A saliva sample collected 30 min after marijuana smoking was subject to SPME and traditional liquid-liquid extraction analysis. Internal standard quantitation results for delta 9-THC by both methods yielded comparable results, indicating that the SPME method of analysis is highly accurate and precise. The level of delta 9-THC by SPME was found to be 9.54 ng/mL for the saliva sample.  相似文献   

9.
Arachidonylethanolamide (anandamide), an endogenous ligand for the cannabinoid receptor, binds competitively to brain cannabinoid receptors and shares many, but not all, of the in vivo effects of delta9-tetrahydrocannabinol. In this study, the cannabinoid effects of anandamide analogs in which the anandamide molecule was altered were assessed in a drug discrimination model. Structural manipulations of the anandamide molecule included saturation of the arachidonyl moiety with fluorination (O-586), substitution for either the ethanolamide moiety (O-612 and O-595) or C2' hydroxyl (O-585), and addition of a methyl group at various positions (O-610, O-680, and O-689). Despite the low binding affinities of the non-methylated compounds (Ki values > 2000 nM), all of the analogs had previously shown cannabinoid activity in mice. In the present study, these analogs were tested in a more pharmacologically specific delta9-tetrahydrocannabinol discrimination procedure in rats. This animal model is predictive of the subjective effects of marijuana intoxication in humans. Whereas delta9-tetrahydrocannabinol and an aminoakylindole fully substituted for the training dose of 3 mg/kg delta9-tetrahydrocannabinol, anandamide and its non-methylated analogs were not cannabimimetic in this procedure. Methylation appeared to increase binding affinity (Ki values < 150 nM) and efficacy; however, the greatest substitution produced by the methylated analogs occurred only at doses that decreased overall rates of responding, suggesting that these analogs are not fully delta9-tetrahydrocannabinol-like. The rapid metabolism of anandamide and some of its analogs undoubtedly contribute to the differences between the pharmacological profiles of the anandamides and classical cannabinoids. These results support the prediction that the subjective effects of anandamide analogs that have been developed thus far would not be cannabimimetic except at high doses.  相似文献   

10.
11.
The regulation by neuropeptide Y of alpha2-adrenoceptors in the nucleus tractus solitarii was evaluated in the adult normotensive Wistar Kyoto rat and the adult spontaneously hypertensive rat. The microinjection of a submaximal dose of l-noradrenaline (800 pmol in 50 nl) alone into the nucleus tractus solitarii produced a significant reduction in the mean arterial blood pressure in either strain. The threshold dose (1 pmol in 50 nl) of neuropeptide Y(1-36) for the vasodepressor response in the Wistar Kyoto rat was five times higher than that (0.2 pmol in 50 nl) in the spontaneously hypertensive rat. Furthermore, neuropeptide Y(1-36) at 0.2 pmol in 50 nl could significantly counteract the vasodepressor response to l-noradrenaline (800 pmol in 50 nl) in the spontaneously hypertensive rat, but not in the Wistar Kyoto rat, in which 1 pmol in 50 nl of neuropeptide Y(1-36) must be employed to counteract the vasodepressor response to l-noradrenaline (800 pmol in 50 nl), although the vasodepressor responses are of a similar magnitude. The in situ hybridization and quantitative receptor autoradiographical experiments showed that the alpha2A-adrenoceptor messenger RNA levels and the B(max) value of the alpha2-adrenoceptor agonist [3H]p-aminoclonidine binding sites measured in the nucleus tractus solitarii of the spontaneously hypertensive rat were substantially lower than those in the Wistar Kyoto rat. The quantitative receptor autoradiographical results were consistent with the cardiovascular results and showed that in the spontaneously hypertensive rat, neuropeptide Y(1-36) at 1 nM led to a significant increase in the K(d) value of [3H]p-aminoclonidine binding sites. In the Wistar Kyoto rat, neuropeptide Y(1-36) produced this effect only at 10 nM. The present study provides evidence for an increase of the potency of neuropeptide Y(1-36) to antagonistically modulate alpha2-adrenoceptors in the nucleus tractus solitarii of the spontaneously hypertensive rat. This enhanced antagonistic action may partly be related to a reduction in the number of alpha2A-adrenoceptors in the nucleus tractus solitarii of the spontaneously hypertensive rat, since a decrease has been observed in the alpha2A-adrenoceptor messenger RNA levels and the alpha2-adrenoceptor binding sites in the spontaneously hypertensive rat. This increased potency of neuropeptide Y(1-36) to antagonize alpha2-adrenoceptor function in the nucleus tractus solitarii of the spontaneously hypertensive rat may contribute to the development of high blood pressure in this hypertensive strain.  相似文献   

12.
Previous data showed the development of tolerance to a variety of pharmacological effects of plant and synthetic cannabinoids when administered chronically. This tolerance phenomenon has been related both to enhancement of cannabinoid metabolism and, in particular, to down-regulation of brain CB1 cannabinoid receptors, although this has been only demonstrated in extrapyramidal areas. In the present study, we have tested, by using autoradiographic analysis of CB1 receptor binding combined with analysis of CB1 receptor mRNA levels in specific brain regions by Northern blot, whether the reduction in binding levels of CB1 receptors observed in extrapyramidal areas after a chronic exposure to delta9-tetrahydrocannabinol (delta9-THC), also occurs in most brain areas that contain these receptors. Results were as follows. The acute exposure to delta9-THC usually resulted in no changes in the specific binding of CB1 receptors in all brain areas studied, discarding a possible interference in binding kinetic of the pre-bound administered drug. The only exceptions were the substantia nigra pars reticulata and the cerebral cortex, which exhibited decreased specific binding after the acute treatment with delta9-THC presumably due to an effect of the pre-bound drug. The specific binding measured in animals chronically (5 days) exposed to delta9-THC decreased ranging from approximately 20 up to 60% of the specific binding measured in control animals in all brain areas. Areas studied included cerebellum (molecular layer), hippocampus (CA1, CA2, CA3, CA4 and dentate gyrus), basal ganglia (medial and lateral caudate-putamen and substantia nigra pars reticulata), limbic nuclei (nucleus accumbens, septum nucleus and basolateral amygdaloid nucleus), superficial (CxI) and deep (CxVI) layers of the cerebral cortex and others. There were only two brain regions, the globus pallidus and the entopeduncular nucleus, where the specific binding for CB receptors was unaltered after 5 days of a daily delta9-THC administration. In addition, we have analyzed the levels of CB1 receptor mRNA in specific brain regions of animals chronically exposed to delta9-THC, in order to correlate them with changes in CB1 receptor binding. Thus, we observed a significant increase in CB1 receptor mRNA levels, but only in the striatum, with no changes in the hippocampus and cerebellum. In summary, CB1 receptor binding decreases after chronic delta9-THC exposure in most of the brain regions studied, although this was not accompanied by parallel decreases in CB receptor mRNA levels. This might indicate that the primary action of delta9-THC would be on the receptor protein itself rather than on the expression of CB1 receptor gene. In this context, the increase observed in mRNA amounts for this receptor in the striatum should be interpreted as a presumably compensatory effect to the reduction in binding levels observed in striatal outflow nuclei.  相似文献   

13.
Methods for the separation, identification, and quantitation, of cannabinoids present in hashish have been developed. These methods include high-pressure liquid chromatographic and gas-liquid chromatographic separation of cannabinol, delta 9-tetrahydrocannabinol, delta 8-tetrahydrocannabinol, and cannabidiol as well as their tau-butyidimethylsilyl either and trimethylsilylacetate derivatives. The necessity for internal standards; the sensitivity of the HPLC method; and some mass spectral fragmentation pathways for the tau-butyldimethylsily, trimethylsilylacetate, and diethylphosphate derivatives are discussed.  相似文献   

14.
Delta9-tetrahydrocannabinol (delta9-THC), cannabinol and cannabidiol are three important natural cannabinoids from the Marijuana plant (Cannabis sativa). Using [35S]GTP-gamma-S binding on rat cerebellar homogenate as an index of cannabinoid receptor activation we show that: delta9-THC does not induce the maximal effect obtained by classical cannabinoid receptor agonists such as CP55940. Moreover at high concentration delta9-THC exhibits antagonist properties. Cannabinol is a weak agonist on rat cerebellar cannabinoid receptors and cannabidiol behaves as an antagonist acting in the micromolar range.  相似文献   

15.
We studied the effects of MNR stimulation on phrenic (Phr) electroneurogram and external intercostal muscles (EI) electromiogram in spontaneously breathing rabbits. Additionally, experiments were performed before and after lignocaine blockade of nucleus tractus solitarii (NTS) to determine whether the information from MNR is transmitted via NTS neurones. The completeness of the blockade of NTS region was checked by studying the Hering-Breuer reflex. MNR was stimulated at the level 2-7 mm rostral to the obex. Stimulation at the rostral part of this region produced inhibition of phasic inspiratory activity, whereas stimulation in the caudal part elicited tonic activity throughout the respiratory cycle. These effects were more pronounced on EI than Phr. Responses to MNR stimulation were attenuated after lignocaine blockade, suggesting that the neurons located in NTS take part in the transmission of the modulatory information from the MNR to respiratory motoneurones.  相似文献   

16.
We examined the effects of agonists at mu, delta and kappa opioid receptors on neurons located in the nucleus tractus solitarius of the rat using whole-cell patch-clamp recordings in brainstem slices. The mu selective opioid agonist DAMGO hyperpolarized most neurons tested. This effect was associated with the activation of a K(+)-conductance. The effect of DAMGO tended to desensitize and was blocked by naloxone. Dynorphin A also produced this effect. However, the kappa-1-selective opioid agonist U-69593 and two delta-selective opioid agonists did not. DAMGO also depressed glutamate-mediated excitatory postsynaptic potentials and GABA-mediated evoked by stimulation of the tractus solitarius. Dynorphin A, U-69593 and delta-opioid agonists also reduced the excitatory postsynaptic potential, although they were less effective than DAMGO. The presynaptic inhibitory effects of DAMGO were also blocked by naloxone, but did not desensitize. These actions may help to explain the ability of opiates to modulate a variety of autonomic reflexes.  相似文献   

17.
Intrathecal administration of delta 9-tetrahydrocannabinol (delta 9-THC) but not the cannabinoid agonist CP55,940 enhances the antinociception produced by morphine. In addition, CP55,940- and delta 9-THC-induced antinociception is blocked by the kappa opioid antagonist norbinaltorphimine, and both cannabinoids are cross-tolerant to kappa agonists but do not act directly at the kappa receptor. Previous work in our laboratory has implicated dynorphins in the antinociceptive effects of delta 9-THC and its enhancement of morphine-induced antinociception. The goal of the present study was to evaluate the role of dynorphins in the antinociceptive effects of CP55,940 at the spinal level. Pretreatment of mice with antisera to dynorphin A(1-17), dynorphin A(1-8) or alpha-neoendorphin, all of which have been shown to retain specificity for blockade of their respective peptide in vivo, blocked the antinociceptive effects of delta 9-THC but not CP55,940. Dynorphin B produced antinociceptive effects on intrathecal administration to mice. Like CP55,940, dynorphin B failed to enhance the antinociceptive effects of morphine, whereas dynorphin A(1-17) and alpha-neoendorphin enhanced the antinociceptive effects of morphine. Using spinal catheterization of the rat, CP55,940 administration was shown to produce a significant release of dynorphin B concurrent with the production of antinociception. Our data suggest that CP55,940 induces a release of spinal dynorphin B that contributes at least in part to its antinociceptive effects in the spinal cord.  相似文献   

18.
A specific receptor for cannabinoids has been characterized at the pharmacological, molecular, and neuroanatomical level. However, less is known of the functional localization in the brain for the behavioral and physiological actions of these drugs. We have examined the effects of delta 9-tetrahydrocannabinol (THC) and its active metabolite 11-OH-THC on regional cerebral blood flow in the rat in order to determine functional CNS sites of action for the cannabinoids. Conscious rats were injected i.v. with one of four doses of THC (0.5, 1, 4, 16 mg/kg). 11-OH-THC (4 mg/kg), or vehicle 30 min prior to sacrifice. Regional cerebral blood flow was determined autoradiographically using the freely diffusible tracer method of Sakaruda et al. Changes in regional cerebral blood flow were observed in 16 of the 37 areas measured. Decreases in regional cerebral blood flow following THC were seen in such areas as the CA1 region of the hippocampus, frontal and medial prefrontal cortex, the nucleus accumbens, and the claustrum. Thresholds for these effects ranged from 0.5 to 16 mg/kg. Areas unaffected by THC include the medial septum, ventral tegmental area, caudate, temporal, parietal and occipital cortex, and cerebellum. These data indicate that THC and its active metabolite, 11-OH-THC, cause a heterogeneous alteration in the activity of specific CNS sites, many of which are involved in the characteristic behavioral actions of THC.  相似文献   

19.
Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation, studies of humans have produced inconsistent results. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs are confounded by motor deficits. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.  相似文献   

20.
Marijuana consumption elicits diverse physiological and psychological effects in humans, including memory loss. Here we report that Delta9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, is toxic for hippocampal neurons. Treatment of cultured neurons or hippocampal slices with THC caused shrinkage of neuronal cell bodies and nuclei as well as genomic DNA strand breaks, hallmarks of neuronal apoptosis. Neuron death induced by THC was inhibited by nonsteroidal anti-inflammatory drugs, including indomethacin and aspirin, as well as vitamin E and other antioxidants. Furthermore, treatment of neurons with THC stimulated a significant increase in the release of arachidonic acid. We hypothesize that THC neurotoxicity is attributable to activation of the prostanoid synthesis pathway and generation of free radicals by cyclooxygenase. These data suggest that some of the memory deficits caused by cannabinoids may be caused by THC neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号