共查询到17条相似文献,搜索用时 74 毫秒
1.
粒子群优化算法是一种具备全局搜索能力的群集智能优化算法,针对一类离散的、NP完全的组合优化问题——旅行商问题,该文介绍了用粒子群算法求解旅行商问题的改进策略和主要模块的程序设计思想。将算法应用到20个城市的解旅行商问题所得到的结果与遗传算法进行比较,数字仿真与结果比较表明了改进粒子群算法求解该问题的有效性。 相似文献
2.
免疫粒子群优化算法求解旅行商问题 总被引:3,自引:0,他引:3
受生物体免疫系统免疫机制的启发,论文把免疫系统的免疫信息处理机制引入到粒子群优化算法中,设计了求解旅行商问题的免疫粒子群优化算法。这种免疫粒子群优化算法结合了粒子群优化算法具有的全局寻优能力和免疫系统的免疫信息处理机制,并且实现简单,改善了粒子群优化算法摆脱局部极值点的能力,提高了算法进化过程中的收敛速度和精度。实验表明本文提出的算法具有较好的性能。 相似文献
3.
模糊离散粒子群优化算法求解旅行商问题 总被引:15,自引:0,他引:15
粒子群优化算法已经成功地应用于求解连续域问题,但是对于离散域问题特别是路由问题的求解研究还很少.本文提出了一种改进的粒子群优化算法,用于求解旅行商问题.采用模糊矩阵来表示粒子的位置和速度,并重新定义其更新公式,最后对TSPLIB中的具体算例进行测试,实验结果表明该算法能够得到较好的结果. 相似文献
4.
5.
6.
在优化领域,粒子群算法适用于求解连续优化问题,而在离散优化上的应用还相对较少。本文在介绍基本粒子群优化算法的基础上,分析了粒子群优化算法在经典旅行商问题 中的应用性能及粒子群算法求解旅行商问题的相关操作。使用Ulysses等标准TSP测试数据进行了相关实验,并通过不同的参数设置对实验结果进行了性能分析和比较。 相似文献
7.
8.
改进微粒群优化算法求解旅行商问题 总被引:21,自引:2,他引:21
对微粒群优化算法的速度位置算式进行了改进,提出一种改进的微粒群优化算法。该算法符合组合优化问题的特点,在求解旅行商问题上有较高的搜索效率。将改进的PSO算法分别应用于14点的TSP问题以及中国旅行商问题中,该算法在较短时间内获得了目前已知的最好解。 相似文献
9.
《计算机应用与软件》2015,(12)
基于随机搜索策略的改进增强型自探索粒子群优化算法难于获得大规模旅行商问题的高质量近似解。为此,引入变异和利用进化过程信息缩减问题规模等机制,提出自适应混合粒子群优化算法。进化搜索分多批次自适应进行,每个批次包括两个阶段。第一阶段,多次搜索获得多个不同的局部最优解,并记录于周游边结构中。第二阶段,学习记录的信息,获得多个关键边序列段,每个段归约为一个整体,以此重新初始化种群,并在其基础上进行下个批次的进化搜索。上述过程反复进行,直到在某第一阶段多次进化中都收敛于同一解为止。实验结果对比分析表明该算法能够获得比同类算法更高质量的近似解。 相似文献
10.
求解旅行商问题的混合粒子群优化算法 总被引:1,自引:0,他引:1
为高效解决旅行商问题,结合光学寻优算法、混沌优化算法、粒子群优化算法,提出了一种新的混合智能优化算法,应用光学寻优算法的优点,为粒子群中粒子找到了一组最优的初始值,引入交换子、交换序列、混沌序列,提出了适合旅行商问题的光学混沌粒子群算——并严格证明了新算法的稳定性、收敛性.数值实验仿真结果表明,该算法收敛速度快、迭代次数少,能快速找到令人满意的最优解,为解决旅行商问题提供了新的思路. 相似文献
11.
对随机组合优化问题中的概率旅行商问题(PTSP)的理论和方法进行了研究分析,采用现代进化算法中有代表性发展优势的萤火虫优化算法(FA),提出一种离散萤火虫优化算法(DFA)以求解.其中引入了新的学习机制使其相比原始的萤火虫优化算法,更容易搜索到全局最优解,有更好的收敛性能.实验中用TSPLIB中的经典实例进行测试来验证其可行性.考察了萤火虫数量和进化迭代次数对求解结果性能的影响,并将DFA与GA、PSO和ACO等其他著名的进化计算算法进行性能比较.实验结果证实了DFA无论对固定访问概率,还是访问概率为区间内随机数等不同情况,都具有良好的有效性和高效性,因此对求解随机组合优化系列问题的有效解决具有一定参考和借鉴价值. 相似文献
12.
该文分析了改进粒子群优化算法和回溯法各自的优缺点,将改进后的粒子群优化算法和回溯法相结合求解旅行商问题.保证了算法的快速收敛和全局收敛能力,仿真实验表明两种算法结合弥补了粒子群算法全局搜优能力不足问题。 相似文献
13.
一种求解TSP问题的粒子群算法改进设计 总被引:1,自引:0,他引:1
采用权重编码方案,将面向连续优化的粒子群优化算法应用于旅行商问题的求解,保留了粒子群算法的易操作性和高效性。针对粒子群算法易陷入局部最优的缺陷,提出了适合旅行商问题的基于k-means的改进措施。采用k-means对粒子群进行聚类分析,实现了粒子之间的信息交换,扩大了粒子的搜索空间,避免了算法陷入局部最优。 相似文献
14.
求解TSP问题的模糊自适应粒子群算法 总被引:9,自引:0,他引:9
由于惯性权值的设置对粒子群优化(PSO)算法性能起着关键的作用,本文通过引入模糊技术,给出了一种惯性权值的模糊自适应调整模型及其相应的粒子群优化算法,并用于求解旅行商(TSP)问题。实验结果表明了改进算法在求解组合优化问题中的有效性,同时提高了算法的性能,并具有更快的收敛速度。 相似文献
15.
蚁群优化是一种元启发式的随机搜索技术,是目前解决组合优化问题最有效的工具之一。旅行商问题(TSP)是一个典型的组合优化问题,易于描述却难于求解。在介绍了求解旅行商问题的三种经典的蚁群算法的基本原理后,着重分析了蚁群算法的发展现状,总结出蚁群算法发展的五个方向,即基于局部优化算法的蚁群算法、对路径上的信息素更新方法进行改进、蚁群算法与其他算法的融合、对蚁群算法的控制参数进行优化和并行蚁群算法。而且这五个方向有相互融合的趋势。 相似文献
16.
米永强 《数字社区&智能家居》2014,(3):1505-1507
蚁群算法是一种求解组合优化问题较好的方法。在蚁群算法的基本原理基础上,以旅行商问题为例,介绍了该算法求解TSP的数学模型及具体步骤,并通过仿真实验与粒子群优化算法等方法比较分析,表明了该算法在求解组合优化问题方面具有良好的性能。 相似文献
17.
基于着色旅行商问题(colored traveling salesman problem, CTSP),给出了一种适用性更加宽泛的组合优化问题模型:着色瓶颈旅行商问题(colored bottleneck traveling salesman problem, CBTSP).CBTSP可建模含有部分重合工作区域的规划问题,譬如有合作任务和单独任务的人员与车辆的路线规划,此类问题由于目标函数与旅行商问题不一样,因此不能够用CTSP模型来建模.由于CBTSP属于NP难问题,对于规模大的此类问题,自然启发式算法是个合适的选择.基于此,提出了一种自然启发式算法求解CBTSP,该算法是基于伊藤过程的粒子群算法(particle swarm optimization, PSO)、模拟退火算法(simulated annealing, SA)和遗传算法(genetic algorithm, GA)的混合算法(PSGA).PSGA首先用二重染色体编码来构建问题的解,然后运用遗传算法的交叉操作进行更新,其中交叉长度由伊藤过程的活动强度来控制,而活动强度由粒子半径和环境温度来决定.为了充分验证算法的有效性,使用小尺度到大尺度不同规模的数据进行实验,通过广泛的实验与分析表明:PSGA求解CBTSP问题的求解质量要优于对比算法. 相似文献