首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a transmit diversity technique for the downlink of (wideband) direct-sequence (DS) code division multiple access (CDMA) systems. The technique, called space-time spreading (STS), improves the downlink performance by using a small number of antenna elements at the base and one or more antennas at the handset, in conjunction with a novel spreading scheme that is inspired by space-time codes. It spreads each signal in a balanced way over the transmitter antenna elements to provide maximal path diversity at the receiver. In doing so, no extra spreading codes, transmit power or channel information are required at the transmitter and only minimal extra hardware complexity at both sides of the link. Both our analysis and simulation results show significant performance gains over conventional single-antenna systems and other open-loop transmit diversity techniques. Our approach is a practical way to increase the bit rate and/or improve the quality and range in the downlink of either mobile or fixed CDMA systems. A STS-based proposal for the case of two transmitter and single-receiver antennas has been accepted and will be included as an optional diversity mode in release A of the IS-2000 wideband CDMA standard  相似文献   

2.
Antenna combining for the MIMO downlink channel   总被引:4,自引:0,他引:4  
A multiple antenna downlink channel where limited channel feedback is available to the transmitter is considered. In a vector downlink channel (single antenna at each receiver), the transmit antenna array can be used to transmit separate data streams to multiple receivers only if the transmitter has very accurate channel knowledge, i.e., if there is high-rate channel feedback from each receiver. In this work it is shown that channel feedback requirements can be significantly reduced if each receiver has a small number of antennas and appropriately combines its antenna outputs. A combining method that minimizes channel quantization error at each receiver, and thereby minimizes multi-user interference, is proposed and analyzed. This technique is shown to outperform traditional techniques such as maximum-ratio combining because minimization of interference power is more critical than maximization of signal power in the multiple antenna downlink. Analysis is provided to quantify the feedback savings, and the technique is seen to work well with user selection and is also robust to receiver estimation error.  相似文献   

3.
In this paper, we study the downlink of a multiuser system, in which antenna arrays are employed at both the transmitter (base station) and the receivers (clients). A space-time modulation technique that can be seen as two-dimensional spreading is introduced. It provides full transmit diversity for every user, and accommodates Nt times the number of users as a single-antenna code-division multi-access (CDMA) scheme, where Nt is the number of transmit antennas. Thus multiple access is provided through spatial as well as code dimensions. In addition, the scheme forms groups of users that are orthogonal to each other. This feature translates into simplified detection strategies without loss of performance. The main detector structure of interest is a two-stage interference canceller because of its low complexity compared to other joint detectors. We will demonstrate that in conjunction with an unequal power allocation scheme, this receiver provides full diversity and suffers from only a small performance loss compared to the full-complexity maximum likelihood (ML) receiver. In a single-user multiple antenna system, the same spreading scheme and unequal power allocation yields a new approach to designing full-rate, full-diversity space-time codes having good performance with successive interference cancellers  相似文献   

4.
It is well known that the full rate and full diversity complex space-time block code (STBC) is not existed for four transmit antennas. In this letter, we propose a simple quasi-orthogonal space-time-frequency block code (QO-STFBC) scheme with four transmit antennas and n R receive antennas, where every two transmit antennas constitute one group and each group transmits signals over different subcarriers. The receiver can separate the received signals from each group via odd/even index FFT operation. After recombining the separated received signals with received antennas, an equivalent half rate orthogonal STFBC (O-STFBC) can be used for decoding. Thus, the full rate and full diversity are achieved at the transmitter and receiver, respectively. Simulation result shows that the proposed QO-STFBC scheme has better performance than the other schemes, in rate 2 layered Alamouti scheme is about 4 dB, full rate QO-STBC scheme is about 5 dB and half rate O-STBC scheme is about 7 dB at 10?3 BER for the transmission of 2 bits/s/Hz.  相似文献   

5.
A High Data Rate (HDR) system has been proposed for providing downlink wireless packet service by using a channel-aware scheduling algorithm to transmit to users in a time-division multiplexed manner. In this paper, we propose using multiple antennas at the transmitter and/or at the receiver to improve performance of an HDR system. We consider the design tradeoffs between scheduling and multi-antenna transmission/detection strategies and investigate the average Shannon capacity throughput as a function of the number of antennas assuming ideal channel estimates and rate feedback. The highest capacities are achieved using multiple antennas at both the transmitter and receiver. For such systems, the best performance is achieved using a multi-input multi-output capacity-achieving transmission scheme such as BLAST (Bell Labs Layered Space-Time) in which the transmitted signal is coded in space and time, and the receive antennas are used to resolve the spatial interference. In the second part of the paper, we discuss practical transmitter and receiver architectures using BLAST for approaching the theoretical gains promised by the capacity analysis. Because the terminal receivers will be portable devices with limited computational and battery power, we perform a computational complexity analysis of the receiver and make high-level assessments on its feasibility. We conclude that the overall computational requirements are within the reach of current hardware technology.  相似文献   

6.
We discuss a prefiltering technique for interference mitigation in the downlink of a time division duplex (TDD) multicarrier code-division multiple access (MC-CDMA) system. The base station (BS) is equipped with multiple transmit antennas, and channel state information (CSI) is obtained at the transmitter side by exploiting the channel reciprocity between uplink and downlink transmissions. The prefiltering coefficients are designed so as to minimize a proper cost function that depends on the signal-to-interference-plus-noise ratios (SINRs) at the mobile terminals (MTs). The resulting scheme allows using a simple despreading receiver, thereby eliminating the need for channel estimation and equalization. Numerical results show the advantages of the proposed scheme over some existing solutions.  相似文献   

7.
Full‐duplex (FD) mode of communication with efficient transmission scheme is a promising approach for 5G wireless systems by improving the spectral efficiency. This can be attained by making use of various precoding approaches. We propose a new co‐channel interference (CCI)‐aware improvement to signal‐to‐leakage‐and‐noise ratio (SLNR) technique and a suppression filter at the receiver to whiten the interference for the downlink channel. As well, for the uplink (UL) communication, we propose a self‐interference (SI)‐aware enhancement to SLNR scheme and designing a precoder using self‐interference plus noise covariance matrix. The total spectral efficiency is obtained from the sum‐rates of both downlink and uplink communication systems. Simulation results verify that the spectral efficiency (SE) of FD using the proposed scheme performs well relative to the half‐duplex system for all Rician factor and for small powers at the base station (BS) and UL communication channel users. Moreover, as the number of users grows, which entails that as the number of receiving antennas greater than the number of antennas at the BS the SLNR scheme still works, nonetheless, zero‐forcing (ZF) and block‐diagonalization (BD) precoding schemes failed. This is due to the fact that designing a precoder based on SLNR scheme supports multiple numbers of antennas at the base station and users compared with ZF and BD by compromising the interference and noise. However, for the cases of ZF and BD approaches failed due to both schemes require the number of transmit antennas at the BS to be larger than the sum of the receiving antennas at all users.  相似文献   

8.
Generalized multiuser orthogonal space-division multiplexing   总被引:8,自引:0,他引:8  
This paper addresses the problem of performing orthogonal space-division multiplexing (OSDM) for downlink, point-to-multipoint communications when multiple antennas are utilized at the base station (BS) and (optionally) all mobile stations (MS). Based on a closed-form antenna weight solution for single-user multiple-input multiple-output communications in the presence of other receiver points, we devise an iterative algorithm that finds the multiuser antenna weights for OSDM in downlink or broadcast channels. Upon convergence, each mobile user will receive only the desired activated spatial modes with no cochannel interference. Necessary and sufficient conditions for the existence of OSDM among the number of mobile users, the number of transmit antennas at the BS, and the number of receive antennas at the MS, are also derived. The assumption for the proposed method is that the BS knows the channels for all MS's and that the channel dynamics are quasi-stationary.  相似文献   

9.
The use of space-division multiple access (SDMA) in the downlink of a multiuser multiple-input, multiple-output (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the co-channel interference of other users. Typical optimization problems of interest include the capacity problem - maximizing the sum information rate subject to a power constraint-or the power control problem-minimizing transmitted power such that a certain quality-of-service metric for each user is met. Neither of these problems possess closed-form solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closed-form solutions. This paper presents two such constrained solutions. The first, referred to as "block-diagonalization," is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as "successive optimization," is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitter-receiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.  相似文献   

10.
本文提出一种可用于宽带数字移动通信系统的多输入多输出(MIMO)无线传输系统架构———分组的空时块编码(G-STBC)MIMO结构,即发送天线被分成若干组,组内的多根天线进行STBC编码,而各组发送的数据流相互独立。针对这一系统架构,提出了基于迫零检测的最优排序串行干扰消除(OZFSIC)接收信号检测算法的实现方案。计算机仿真结果表明,这种空时编码MIMO结构在等数据率的情况下能获得比相应的V-BLAST系统更优的性能。G-STBC-MIMO结构可以使发送天线多于接收天线,因此,对于无线通信系统下行链路以及大数据量广播业务系统(如数字高清晰度电视地面传输系统)都较V-BLAST更具有优势。  相似文献   

11.
We propose two signaling schemes that exploit the availability of multiple (N) antennas at the transmitter to provide diversity benefit to the receiver. This is typical of cellular radio systems where a mobile is equipped with only one antenna while the base station is equipped with multiple antennas. We further assume that the mobile-to-base and base-to-mobile channel variations are statistically independent and that the base station has no knowledge of the base-to-mobile channel characteristics. In the first scheme, a channel code of lengthN and minimum Hamming distanced minN is used to encode a group ofK information bits. Channel code symbolc i is transmitted with thei th antenna. At the receiver, a maximum likelihood decoder for the channel code provides a diversity ofd min as long as each transmitted code symbol is subjected to independent fading. This can be achieved by spacing the transmit antennas several wavelengths apart. The second scheme introduces deliberate resolvable multipath distortion by transmitting the data-bearing signal with antenna 1, andN–1 delayed versions of it with antennas 2 throughN. The delays are unique to each antenna and are chosen to be multiples of the symbol interval. At the receiver, a maximum likelihood sequence estimator resolves the multipath in an optimal manner to realize a diversity benefit ofN. Both schemes can suppress co-channel interference. We provide code constructions and simulation results for scheme 1 to demonstrate its merit. We derive the receiver structure and provide a bound on the error probability for scheme 2 which we show to be tight, by means of simulations, for the nontrivial and perhaps the most interesting caseN=2 antennas. The second scheme is backward-compatible with two of the proposed digital cellular system standards, viz., GSM for Europe and IS-54 for North America.  相似文献   

12.
We study the ergodic sum-rate capacity of the fading MIMO broadcast channel which is used to model the downlink of a cellular system with N/sub t/ transmit antennas at the,base and K mobile users each having N/sub r/ receive antennas. Assuming perfect channel state information (CSI) for all users is available at the transmitter and the receivers, we evaluate the sum-rate capacity numerically using the duality between uplink and downlink. Assuming Nt K, we also derive both upper and lower bounds on the sum-rate capacity to study its increase rate due to multi-user diversity. Finally, we compare three transmission schemes which use the single-user-MIMO scheme (SU-MIMO), ranked known interference (RKI) and zero-forcing beamforming (ZFB), respectively, to transmit to a selected set of users in order to approach the sum-rate capacity. We show that both ZFB and RKI outperform SU-MIMO in a cellular downlink scenario. when many mobile users are present.  相似文献   

13.
为了提高大规模多用户多输入多输出(MU-MIMO)下行系统的能效,提出了一种基于发送天线选择技术的能效优化机制。首先建立了同时考虑发送功率与电路功耗的新的系统功耗模型,并基于该模型,分析了基站配置天线数目与所有接收终端用户数目对系统总功耗及能效的影响。然后通过理论推导得到了系统能效最优时的最优天线选择数目,并与使用全部天线时的系统能效进行比较。仿真结果表明,所提出的发送天线选择机制通过优化激活部分基站天线能够明显提高系统能效。在用户数为10、发送功率分别为40 W和10 W时,与使用全部天线相比,天线选择技术能够分别使得系统能效获得大约12%和78%的性能增益。  相似文献   

14.
We consider J transmitter units each equipped with N transmit antennas over wireless Rayleigh fading channels. Previously in [1], it was proved that when each transmitter unit has TV transmit antennas, using (J - 1)N + r receive antennas for any r ges 1, the receiver can completely separate the signals of J users. The provided diversity to each user was shown to be Nr if the units employ space-time trellis codes even if the units transmit asynchronously. Here, we consider the case when all units are synchronized and employ quasi-orthogonal space-time block codes (N > 2). It is proved that in this case a receiver with J + r - 1 antennas with r ges 1 can separate the transmitted signals of all units and provide each unit with a diversity order of Nr. Based on our interference cancellation technique, we then offer an array processing scheme which provides trade-off between diversity and spatial multiplexing. It is shown via simulations that this array processing scheme performs better than well-known modulation schemes, e.g. space-time block codes and BLAST, for a moderate number of receive antennas.  相似文献   

15.
基于对角信号的差分酉空时调制技术不需要信道估计并能实现满天线分集,但接收机的计算复杂度与发射天线数和数据率成指数关系。该文针对发射天线数为偶数的系统,提出了一种降低接收机计算复杂度的差分空时调制方案。该方案将发射天线分成相等数目的两组并在每一组天线上分别进行对角酉空时调制,接着构造差分编码矩阵使得两个对角信号的最大似然检测可以分开进行,从而大大降低了接收机的计算复杂度。理论分析和仿真表明,该方案仍实现了满天线分集,并且对于某些应用环境能提供比对角信号更好的误比特率性能。  相似文献   

16.
We propose a two-stage precoder/equalizer to suppress intercarrier interference (ICI) and multiuser interference (MUI) in downlink multiuser OFDM with multiple transmit antennas. The first stage, non-linear Tomlinson-Harashima preceding (THP) at the base station (BS) transmitter, mitigates the effect of the spatial inter-stream interference caused by transmission from multiple transmit antennas to decentralized users. In the second stage, each user's receiver employs low- complexity iterative linear minimum mean-square error (MMSE) equalization to suppress the ICI due to frequency offset. Our proposed technique virtually eliminates the bit error rate (BER) degradation due to normalized frequency offsets as high as 10%.  相似文献   

17.
Future communications satellites can be expected to employ multibeam antennas for both receiving (uplink) and transmitting (downlink). The use of multibeam satellite transmitting antennas raises the question of how to assign the transmitted power and antenna gain to each of theNbeams such that optimum use is made of satellite resources. We refer to this problem as the downlink allocation problem; it is part of the larger problem of allocating all satellite network variables. This concise paper deals with both problems. Specifically, we rigorously formulate and solve the downlink problem for an arbitrary number of beams using the Lagrange multiplier technique for constrained extremal problems. We then discuss procedures for incorporating the optimum downlink allocation results into a complete system allocation.  相似文献   

18.
MIMO Broadcast Channels With Finite-Rate Feedback   总被引:8,自引:0,他引:8  
Multiple transmit antennas in a downlink channel can provide tremendous capacity (i.e., multiplexing) gains, even when receivers have only single antennas. However, receiver and transmitter channel state information is generally required. In this correspondence, a system where each receiver has perfect channel knowledge, but the transmitter only receives quantized information regarding the channel instantiation is analyzed. The well-known zero-forcing transmission technique is considered, and simple expressions for the throughput degradation due to finite-rate feedback are derived. A key finding is that the feedback rate per mobile must be increased linearly with the signal-to-noise ratio (SNR) (in decibels) in order to achieve the full multiplexing gain. This is in sharp contrast to point-to-point multiple-input multiple-output (MIMO) systems, in which it is not necessary to increase the feedback rate as a function of the SNR  相似文献   

19.
This work presents a space‐frequency prefiltering scheme for slowly time‐varying TDD MC‐CDMA downlink communications with multiple antennas at the base station (BS). Unlike the conventional spatially uncorrelated block fading channel model, both channel variation in each packet and spatial correlation are considered in the design. In the TDD mode, the mobile terminals (MTs) transmit training signals at the end of each uplink packet. In the following downlink packet, the BS computes the signal weights on different antennas and subcarriers for each MT in each symbol period based on the channel state predicted from the received training signals. The goal is to minimize the total required transmit power while keeping the received signal‐to‐interference‐plus‐noise ratio (SINR) as the target for each MT. Moreover, the maximum packet length for satisfying the SINR requirements has been determined. The results indicate that the total required transmit power can be reduced by a lower mobile speed or more BS antennas. As a result, the maximum packet length can be extended in virtue of the power reduction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The bit error rate (BER) performance of a two-dimensional (2-D) RAKE receiver, in combination with transmit diversity on the downlink of a wide-band CDMA (W-CDMA) system, is presented. The analyses assume correlated fading between receive antenna array elements, and an arbitrary number of independent but nonidentical resolvable multipaths combined by the RAKE receiver in the general Nakagami-m (1960) fading channel framework. The impact of the array configuration (e.g., the number of transmit antennas and receive antennas, the antenna element separation) and the operating environment parameters (such as the fading severity, angular spread and path delay profile) on the overall space-path diversity gain can be directly evaluated. In addition, the exact pairwise error probability of a convolutional coded system is obtained, and the coding gain of a space-path diversity receiver is quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号