首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The actin filament-disrupting agent cytochalasin D strikingly increased tyrosine phosphorylation of a 75 kDa protein (p75) in rabbit aortic vascular smooth muscle cells. The microtubule-disrupting agent, colchicine had no effect on p75 tyrosine phosphorylation. Cytochalasin D also stimulated p75-directed kinase activity as determined by kinase assays of anti-Tyr(P) immunoprecipitates. Cytochalasin D stimulated tyrosine phosphorylation of the F-actin-binding protein, p80/85 cortactin, but p75 was not immunologically related either to cortactin, the phosphatidylinositol 3'-kinase p85 alpha subunit, or the 80 kDa isoform of caldesmon. These results suggest that p75 may represent a cytochalasin D-inducible kinase or kinase-associated component and provide evidence for the existence of a potentially novel kinase pathway regulated by disruption of the actin cytoskeleton.  相似文献   

2.
Thrombin elicits responses in platelets such as shape change, aggregation, arachidonate liberation and secretion of the contents of three storage granules, processes that coincide with serine/threonine and tyrosine phosphorylation of numerous proteins, hydrolysis of polyphosphoinositides and mobilisation of Ca2+ within the cell. However, the significance of these parallel signal transduction processes has not been clearly elucidated in the light of the prevalent autocrine stimulation in platelets: a great amplification of the thrombin signal through secreted ADP, by production of thromboxane A2 from the liberated arachidonic acid, by the close cell contact produced by aggregation caused by exposure of integrin receptors that become ligated by fibrinogen and other platelet-produced factors. In the present communication five pathways of autocrine stimulation have been prevented by appropriate inhibitors. Under these conditions thrombin stimulated platelet secretion with little tyrosine phosphorylation, except for a 125-130 kDa protein that was tyrosine-phosphorylated in response to one of the inhibitors, the peptide Arg-Gly-Asp-Ser (RGDS) used to block aggregation. In sharp contrast, collagen elicits massive tyrosine phosphorylation and platelet secretion in the absence of autocrine stimulation. When the thrombin-induced tyrosine phosphorylations was corrected for RGDS-induced phosphorylation, the presence of inhibitors of autocrine stimulation reduced the thrombin-induced phosphorylation by 97%. Our results strongly suggests that tyrosine phosphorylation is not part of the signal transduction pathway initiated by thrombin per se, but it represents an integral part of signal transduction initiated by collagen.  相似文献   

3.
Infection of epithelial cells by two biovars of Chlamydia trachomatis results in the tyrosine phosphorylation of several host proteins. The most prominent change in host protein tyrosine phosphorylation involves a complex of proteins with molecular masses of 75 to 85 kDa (pp75/85) and 100 kDa (pp100). The C. trachomatis-induced tyrosine phosphorylation of pp75/85 and pp100 is observed in several cell lines, including epithelial cells, fibroblasts, and macrophages. Subcellular fractionation and detergent solubility properties of pp75/85 are consistent with its association with the cytoskeleton. Phosphoamino acid analysis demonstrates that the pp75/85 complex is phosphorylated on both tyrosine and serine residues. Immunofluorescence studies of chlamydia-infected cells by using fluorescein isothiocyanate-phalloidin and antibodies to phosphotyrosine and cortactin demonstrate that tyrosine-phosphorylated proteins, as well as cortactin, are localized to the chlamydial vacuole and that this process is facilitated by actin.  相似文献   

4.
Treatment of human platelets with the lectin Concanavalin A (Con A) resulted in the tyrosine phosphorylation of several proteins with molecular masses 65, 80, 85, 95, 120, 135, and 150 kDa. These proteins were divided in two groups: the first group included the 65-, 85-, 95-, and 120-kDa bands, which were tyrosine phosphorylated also in thrombin-stimulated platelets; the second group (80-, 135-, and 150-kDa bands) included proteins whose tyrosine phosphorylation was exclusively promoted by Con A, but not by thrombin. Members of the second group were rapidly dephosphorylated when the lectin was displaced from the cell surface by methyl alpha-D-mannopyranoside. Pretreatment of intact platelets with the prostacyclin analog iloprost, inhibited Con A-induced tyrosine phosphorylation of the first group of proteins, but had no effect on the tyrosine phosphorylation of the proteins of the second group. Succinyl-Con A, a dimeric derivative of the lectin, which binds to the platelet surface but does not promote clustering of the receptor, did not induce tyrosine phosphorylation of the second group of proteins, although phosphorylation of some members of the first group was observed. Our results demonstrate the presence of two different mechanisms leading to protein-tyrosine phosphorylation in Con A-stimulated platelets, and identify a new signal transduction pathway, promoted by the clustering of membrane glycoproteins, that produces tyrosine phosphorylation of specific substrates. This new pathway may be activated by platelet interaction with multivalent ligands, such as adhesive proteins, during adhesion, spreading, and aggregation.  相似文献   

5.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen-dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

6.
A key regulatory event controlling platelet activation is mediated through the phosphorylation of several cellular proteins by protein-tyrosine kinases. The related adhesion focal tyrosine kinase (RAFTK) is a novel cytoplasmic tyrosine kinase and a member of the focal adhesion kinase (FAK) gene family. FAK phosphorylation in platelets is integrin-dependent, occurs in a late stage of platelet activation, and is dependent on platelet aggregation. In this study, we have investigated the involvement of RAFTK phosphorylation during different stages of platelet activation. Treatment of platelets with thrombin induced, in as early as 10 s, a rapid tyrosine phosphorylation of RAFTK in a time- and concentration-dependent manner. Treatment of platelets with thrombin in the absence of stirring or pretreatment of platelets with RGDS peptide prevented platelet aggregation, but not RAFTK phosphorylation. Furthermore, phosphorylation of RAFTK did not require integrin engagement since platelets treated with the 7E3 inhibitory antibodies that block fibrinogen binding to glycoprotein IIb-IIIa did not inhibit RAFTK phosphorylation. Similarly, platelets treated with LIBS6 antibodies, which specifically activate glycoprotein IIb-IIIa, did not induce RAFTK phosphorylation. Stimulation of platelets by several agonists such as collagen, ADP, epinephrine, and calcium ionophore A23187 induced RAFTK phosphorylation. Tyrosine phosphorylation of RAFTK in platelets is regulated by calcium and is mediated through the protein kinase C pathway. Phosphorylation of RAFTK is dependent upon the formation of actin cytoskeleton as disruption of actin polymerization by cytochalasin D significantly inhibited this phosphorylation. The RAFTK protein appears to be proteolytically cleaved by calpain in an aggregation dependent manner upon thrombin stimulation. These results demonstrate that RAFTK is tyrosine-phosphorylated during an early phase of platelet activation by an integrin- independent mechanism and is not dependent on platelet aggregation, suggesting different mechanisms of regulation for FAK and RAFTK phosphorylation during platelet activation.  相似文献   

7.
Three groups of phosphoproteins have been distinguished, basing on the velocity and extent of phosphorylation in platelets stimulated with collagen. pp60c-src constituted the first group; the increase in its phosphorylation was the highest and most rapid (maximal in 30 s after the addition of collagen). pp80/85 and non-identified protein of 65 kDa formed the second group; the increase in their phosphorylation was twice smaller than that of pp60c-src, and reached its maximum 60 s after the addition of collagen. pp120, pp72syk, and two non-identified phosphoproteins of 90 and 75 kDa constituted the third group; the increase in their phosphorylation was 4-10-fold lower than that of pp60c-src and reached its maximum after 180 s. We conclude that the phosphorylation of pp60c-src is important for the change of shape of platelets, the phosphorylation of pp80/85 and pp65 for the initiation of the formation of aggregates and the phosphorylation of the third group of phosphoproteins for the formation of massive aggregates. This conclusion was supported by using a monoclonal anti-GPIb antibody, which did not inhibit the shape change of platelets and did not inhibit pp60c-src phosphorylation. This antibody inhibited aggregate formation as well as tyrosine phosphorylation of proteins belonging to the second and the third group of phosphoproteins.  相似文献   

8.
Human leukemic cell line K562 is induced to differentiate into the megakaryocytic lineage by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). We demonstrate here that TPA stimulation increases tyrosine phosphorylation of an 80-kDa protein at an early stage of megakaryocytic differentiation and that this 80-kDa protein is identical with cortactin. Since tyrosine kinase Syk was activated by TPA stimulation, we examined the possibility that cortactin is a potential substrate of Syk in K562 cells. TPA-induced tyrosine phosphorylation of cortactin was decreased profoundly by overexpression of dominant-negative Syk. Furthermore, cortactin was associated with Syk even before TPA stimulation. Since cortactin was previously referred as an 80/85-kilodalton pp60src substrate, we examined the association between Src and cortactin, whereas its association could not be detected. These data suggest that Syk phosphorylates cortactin in K562 cells upon TPA treatment.  相似文献   

9.
We have investigated the signal transduction pathway of the G-protein mu-opioid receptor upstream of phospholipase D (PLD) and protein kinase C-epsilon (PKC-epsilon) activation in postmitotic E6CH chick embryo cortical neurons. The mu-opioid receptor and PLD-PKC-epsilon functional coupling depends on upstream tyrosine kinase activation. We now report that the mu-opioid agonists specifically stimulated tyrosine phosphorylation and activation of the focal adhesion kinase (FAK) in a time-dependent manner. We also demonstrate that met-enkephalin, a mu-opioid agonist in E6CH cultures, significantly increases tyrosine phosphorylation of another Src kinase substrate, the cytoskeletal protein cortactin. Tyrosine phosphorylation of cortactin led to drastic changes in subcellular localization, an estimated 2-fold enrichment in the cytosol. Similarly, opioids stimulated a sustained tyrosine phosphorylation of vinculin, a protein enriched in focal adhesion sites. These data provide novel evidence that opioid receptor intracellular signaling engages the specific activation of tyrosine kinase FAK and regulates the neuronal cytoskeleton during central nervous system morphogenesis.  相似文献   

10.
Aggregation of high affinity IgE Fc receptors (Fc epsilon RI) on RBL-2H3 cells results in tyrosine phosphorylation of 33-, 42-, 44-, 72-, 80-, 90-, 125-kDa proteins. The 42 and 44 kDa proteins were identified as mitogen-activated protein (MAP) kinases with immunoblotting of anti-MAP kinase antibody. The effects of an antiallergic drug, pemirolast potassium (TBX) on Ag-induced protein tyrosine phosphorylation and MAP kinase activation were investigated. When RBL-2H3 cells were stimulated with Ag in the presence of TBX, tyrosine phosphorylation of three proteins (33, 42 and 44 kDa) was inhibited concentration-dependently (0.1-10 micrograms/ml). Inhibition of Ag-induced tyrosine phosphorylation of 33 kDa protein, which could be a beta subunit of Fc epsilon RI, suggests that TBX may prevent the activation of Fc epsilon RI. TBX suppressed activation of MAP kinases (42 and 44 kDa) in response to Ag as well as phorbol myristate acetate (100 nM) or calcium ionophore A23187 (500 nM), implying that the drug acts on signal transduction component(s) between the second messengers and MAP kinases. However, TBX had no effects on protein tyrosine phosphorylation and MAP kinase activation in MC3T3-E1 osteoblastic cells. These results indicate that TBX may affect Fc epsilon RI and also may act as a step distal of Ca2+ mobilization and protein kinase C activation leading to MAP kinase activation in RBL-2H3 cells.  相似文献   

11.
The relationship between platelet aggregation, calpain activation, PKC activities and the secretory response have been examined in PMA-and ionomycin-stimulated platelets. Co-addition of PMA and ionomycin resulted in a maximal synergistic secretion of [14C]5-hydroxytryptamine ([14C]5-HT) from platelet dense granules. However, prior addition of PMA for 5 or 10 min resulted in a reduction of this secretory response. Inclusion of either RGDS (to inhibit platelet aggregation) or E64-d (to inhibit calpain activity) resulted in full restoration of the secretory response. In experiments to determine the activity status of PKC, PMA was found to induce a loss in cytosolic and total PKC activity without an increase in membrane-associated activities during this time period. Inhibition of either platelet aggregation or calpain activity resulted in preservation of total and cytosolic activities with a measurable increase in membrane translocated activity. PMA-induced phosphorylation of a number of PKC substrates was measured in 32P-labelled platelets. PMA induced potent phosphorylation of the 45 and 20 kDa species and also proteins of the molecular masses 66, 80, 97 and 119 kDa. Phosphorylation was maximal at either 1 or 2 min after which dephosphorylation occurred. Inclusion of either RGDS or E64-d resulted in a reduction of the dephosphorylation rates, and sustained phosphorylation of the 66, 80, 97 and 119 kDa proteins. These studies suggest that the activity status of PKC is an important factor in the level of secretion obtained and that platelet aggregation is involved in calpain-initiated down-regulation of PKC.  相似文献   

12.
Reactive oxygen species play an important role at the site of vascular injuries and arterial thromboses. We studied the mechanism mediating platelet aggregation induced by H2O2, a major cellular oxidant. Exposure to H2O2 triggered platelet aggregation, but only when the platelets were stirred. Strong platelet aggregation induced99032416 required the presence of the tyrosine phosphatase inhibitor sodium orthovanadate (NaVO4) and was dependent on the participation of integrin alphaIIbbeta3 (glycoprotein IIb-IIIa). A specific inhibitor of alphaIIbbeta3 blocked platelet aggregation induced by H2O2 and NaVO4, thus confirming that aggregation requires this receptor. In the presence of H2O2 and NaVO4, multiple platelet substrates were phosphorylated on tyrosine. Such tyrosine kinase response was necessary but not sufficient to activate alphaIIbbeta3, as detected by binding of soluble fibrinogen to platelets. Stirring of the platelets exposed to H2O2 and NaVO4 was also needed to allow for binding of fibrinogen to alphaIIbbeta3. The tyrosine kinase inhibitor genistein was able to block platelet aggregation induced by H2O2 and NaVO4, thus confirming that tyrosine kinase activity was needed to trigger alphaIIbbeta3 activation on stirring. N-Acetyl-L-cysteine, a cell-permeant antioxidant, blocked the tyrosine phosphorylation of platelet substrates and also the platelet aggregation induced by H2O2 and NaVO4. We found that beta3 was phosphorylated on tyrosine in platelets exposed to H2O2 and NaVO4, even in the absence of aggregation. Hence, tyrosine phosphorylation of beta3 might contribute to the "priming" of alphaIIbbeta3 induced by H2O2 and NaVO4, whereby the receptor can become activated on stirring of the platelets.  相似文献   

13.
Platelet aggregation is believed to follow platelet adhesion to vascular injury sites. We have developed a turbidimetric assay for platelet aggregation following platelet adhesion to immobilized ligands using an aggregometer. The addition of polystyrene beads coated with von Willebrand factor (vWF) or fibrinogen (Fg) to platelet suspensions caused prompt aggregation of beads and platelets, which was detected as an increase in light transmission. Electron microscopic analysis revealed that platelets adhered to the bead surfaces and that additional platelets adhered to already adhering platelets, leading to the formation of platelet aggregates. vWF-coated beads induced larger aggregates than Fg-coated beads. The interaction of vWF-coated beads with platelets was abolished by both GPIb and GPIIb-IIIa blockers, while that of Fg-coated beads was abolished by GPIIb-IIIa blockers. vWF-coated beads induced modest secretion of granules from platelets but no thromboxane B2 synthesis. Fg-coated beads induced neither reaction. However, pleckstrin phosphorylation and protein tyrosine phosphorylation was induced by both types of bead. Platelet aggregation following platelet adhesion to both types of bead was inhibited by ADP scavengers, a protein kinase C inhibitor and a tyrosine kinase inhibitor, but not by aspirin. These findings suggest that vWF- and Fg-coated beads can induce platelet aggregation following platelet adhesion through specific ligand-receptor interactions and intracellular signaling. Our simple assay using these beads may represent a useful test for immobilized ligand-induced platelet adhesion and aggregation.  相似文献   

14.
Rapid activation of blood platelets is required for effective haemostasis, with shape change, aggregation, secretion of granule contents and cell adhesion occurring in seconds or even milliseconds. Signal-transduction events, evidenced by changes in protein phosphorylation and calcium levels, also take place in this time domain. We have now shown that platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial shear forces initiated the rapid dephosphorylation of a 67 kDa protein "band" which contained the 70 kDa constitutive heat-shock protein, hsc70. Immunoprecipitation with hsc70 antibodies revealed a large phosphoprotein complex in resting platelets and adhesion caused dissociation of the complex along with dephosphorylation of hsc70. The complex also contained the hsp90 heat-shock protein, protein phosphatase IC, alpha, delta and M subunits, and some 7-8 unidentified phosphoproteins. The data suggest that heat-shock proteins and protein phosphatases are actively involved in integrin-mediated platelet adhesion.  相似文献   

15.
Constitutive tyrosine phosphorylation of CrkL was recently demonstrated in platelets from chronic myelogenous leukaemia (CML) patients but BCR-ABL tyrosine kinase could not be detected in the platelet lysates. We studied platelets from 14 CML patients with different types of BCR-ABL mRNA and with maximal platelet counts ranging from 149 to 3069 x 10(9)/l. P210BCR-ABL protein was detected by Western blotting in platelet lysates of 12/13 CML patients with active disease but not in the lysate of platelets from a Ph-positive acute lymphoblastic leukaemia (ALL) patient in remission or eight BCR-ABL-negative controls including one essential thrombocythaemia (ET) patient. Immunoblotting of p210BCR-ABL-positive platelets lysates with anti-CrkL antibody revealed a CrkL triplet consisting of one unphosphorylated and two phosphorylated forms of the protein. This CrkL phosphorylation pattern was not observed in normal platelets or CML platelets treated with ABL tyrosine kinase inhibitor CGP57148B. The presence of BCR-ABL provides an explanation for the constitutive tyrosine phosphorylation of CrkL in CML platelets. As no correlation was observed between platelet counts and platelet BCR-ABL protein expression, thrombocytosis or thrombocythaemia in CML cannot be explained by constitutive BCR-ABL-mediated CrkL tyrosine phosphorylation.  相似文献   

16.
The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65-70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65-70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65-70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca(2+)-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65-70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca(2+)-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

17.
Bruton's tyrosine kinase (Btk) is essential for normal B-cell receptor signalling. The lack of expression of functional Btk in humans leads to the B-cell deficiency X-linked agammaglobulinaemia (XLA). We report here that Btk is also important for signalling via the collagen receptor glycoprotein VI (GPVI) in platelets. GPVI is coupled to the Fc receptor gamma chain (FcRgamma). The FcRgamma-chain contains a consensus sequence known as the immune-receptor tyrosine-based activation motif (ITAM). Tyrosine phosphorylation of the ITAM upon GPVI stimulation is the initial step in the regulation of phospholipase C gamma2 (PLCgamma2) isoforms via the tyrosine kinase p72(Syk) (Syk) in platelets. Here we show that collagen and a collagen-related peptide (CRP), which binds to GPVI but does not bind to the integrin alpha2beta1, induced Btk tyrosine phosphorylation in platelets. Aggregation, dense granule secretion and calcium mobilisation were significantly diminished but not completely abolished in platelets from XLA patients in response to collagen and CRP. These effects were associated with a reduction in tyrosine phosphorylation of PLCgamma2. In contrast, aggregation and secretion stimulated by thrombin in Btk-deficient platelets were not significantly altered. Our results demonstrate that Btk is important for collagen signalling via GPVI, but is not essential for thrombin-mediated platelet activation.  相似文献   

18.
Phosphotyrosine was found to be 0.5% of the total phosphoamino acids labelled with [32P]orthophosphate in endogenous maize seedlings proteins. Two peaks of protein kinase activity towards phosphorylation of synthetic peptide poly (Glu80, Tyr20) were obtained after chromatography of protein extract of dark-grown etiolated maize seedlings on phosphocellulose. The phosphorylation of synthetic peptide as well as endogenous proteins was strongly stimulated by Mn2+. At least three endogenous proteins with molecular masses in the range of 40-65 kDa were predominantly phosphorylated. This phosphorylation was resistant to alkali treatment. Chemical, immunological and enzymatic data indicated the presence of tyrosine kinase activity and also phosphotyrosine in proteins of maize seedlings. The plant enzyme(s) is reminiscent known mammalian cytosolic tyrosine kinase(s).  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3K) is a heterodimer lipid kinase consisting of an 85-kD subunit bound to a 110-kD catalytic subunit that also possesses intrinsic, Mn(2+)-dependent protein serine kinase activity capable of phosphorylating the 85-kD subunit. Here, we examine the Mn(2+)-dependent protein kinase activity of PI3K alpha immunoprecipitated from normal resting or thrombin-stimulated platelets, and characterize p85/p110 phosphorylation, in vitro. Phosphoamino acid analysis of phosphorylated PI3K alpha showed p85 and p110 were phosphorylated on serine, but in contrast to previous results, were also phosphorylated on threonine and tyrosine. Wortmannin and LY294002 inhibited p85 phosphorylation; however, p110 phosphorylation was also inhibited suggesting p110 autophosphorylation on serine/threonine. The protein tyrosine kinase inhibitor, erbstatin analog, partially inhibited p85 and p110 phosphorylation but did not appear to affect PI3K lipid kinase activity. The in vitro phosphorylation of p85 alpha or p110 alpha derived from thrombin-stimulated platelets was no different than that of resting platelets, but we confirm that in thrombin receptor-stimulated platelets enhanced levels of p85 alpha and PI3K lipid kinase activity were recovered in antiphosphotyrosine antibody immunoprecipitates. These results suggest PI3K alpha can autophosphorylate on serine and threonine, and both p85 alpha and p110 alpha are substrates for a constitutively-associated protein tyrosine kinase in platelets.  相似文献   

20.
Polymorphonuclear leukocyte (PMN) adhesion to activated platelets is important for the recruitment of PMN at sites of vascular damage and thrombus formation. We have recently shown that binding of activated platelets to PMN in mixed cell suspensions under shear involves P-selectin and the activated beta2-integrin CD11b/CD18. Integrin activation required signaling mechanisms that were sensitive to tyrosine kinase inhibitors.1 Here we show that mixing activated, paraformaldehyde (PFA)-fixed platelets with PMNs under shear conditions leads to rapid and fully reversible tyrosine phosphorylation of a prominent protein of 110 kD (P approximately 110). Phosphorylation was both Ca2+ and Mg2+ dependent and was blocked by antibodies against P-selectin or CD11b/CD18, suggesting that both adhesion molecules need to engage with their respective ligands to trigger phosphorylation of P approximately 110. The inhibition of P approximately 110 phosphorylation by tyrosine kinase inhibitors correlates with the inhibition of platelet/PMN aggregation. Similar effects were observed when platelets were substituted by P-selectin-transfected Chinese hamster ovary (CHO-P) cells or when PMN were stimulated with P-selectin-IgG fusion protein. CHO-P/PMN mixed-cell aggregation and P-selectin-IgG-triggered PMN/PMN aggregation as well as P approximately 110 phosphorylation were all blocked by antibodies against P-selectin or CD18. In each case PMN adhesion was sensitive to the tyrosine kinase inhibitor genistein. The antibody PL-1 against P-selectin glycoprotein ligand-1 (PSGL-1) blocked platelet/PMN aggregation, indicating that PSGL-1 was the major tethering ligand for P-selectin in this experimental system. Moreover, engagement of PSGL-1 with a nonadhesion blocking antibody triggered beta2-integrin-dependent genistein-sensitive aggregation as well as tyrosine phosphorylation in PMN. This study shows that binding of P-selectin to PSGL-1 triggers tyrosine kinase-dependent mechanisms that lead to CD11b/CD18 activation in PMN. The availability of the beta2-integrin to engage with its ligands on the neighboring cells is necessary for the tyrosine phosphorylation of P approximately 110.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号