首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
本文通过对变压器线圈载流导体涡流损耗的解析解和数值解的对比,提出了一种既节省计算时间,又有良好精度的适合于变压器线圈涡流损耗计算的新的混合算法,并以360 000kVA和17 000kVA两台三相电力变压器为例进行了计算。  相似文献   

2.
反激变换器的变压器线圈涡流损耗为高频功率磁元件线圈技术的研究热点之一。在已有研究基础上,应用电磁场有限元仿真以及通过分解线圈电流分析了反激变换器的变压器线圈涡流损耗机制,发现其线圈窗口磁场兼有电感器和变压器磁场的特征。据此机制,研究了减小其线圈涡流损耗的方法,指出该方法的有效性取决于线圈窗口磁场的构成。通过研究其线圈窗口磁场的正交性,进一步提出一种新型反激变换器的变压器线圈损耗解析模型。有限元数值仿真验证了研究结果的正确性。  相似文献   

3.
变压器绕组漏磁场引起的涡流损耗占附加损耗的比重较大,会使变压器产生局部过热,寿命缩短,关系到变压器设计、制造,并影响变压器运行性能。因此准确计算绕组涡流损耗对变压器的优化设计有重要意义,而工程上针对变压器绕组涡流损耗,应用传统经验公式计算,误差较大,且不能准确计算绕组的横向涡流损耗。基于ANSYS有限元法建立了变压器的二维有限元模型,基于电磁场理论分析了变压器的漏磁分布,得到了各次谐波电流背景下绕组的涡流损耗分布及损耗值。从涡流损耗理论计算与有限元仿真计算结果对比表明,有限元法损耗计算更相近实际,更加准确,为变压器温度场热源的计算以及变压器的优化设计提供了可能。  相似文献   

4.
变压器箱体涡流损耗的三维有限元分析   总被引:2,自引:0,他引:2  
建立了电力变压器漏磁场及箱体涡流损耗的计算模型,计算了变压器箱体的涡流损耗分布,提出了减少箱体涡流损耗的电磁屏蔽和磁屏蔽方法.  相似文献   

5.
建立了变压器漏磁场及金属结构件涡流损耗的仿真模型,计算了不同铁心夹紧结构时变压器金属结构件中的涡流损耗分布,提出了减少金属结构件中涡流损耗的方法。  相似文献   

6.
随着电力系统的发展,变压器容量也在逐步增大,随之而产生的问题就是变压器中绕组的涡流损耗问题。容量增大使得变压器漏磁场变大并不能再被忽略,漏磁场在变压器中的铁芯、绕组等导磁部件中引起的涡流损耗会导致局部结构件的温度升高,并可能危及变压器的正常运行。因此结合变压器漏磁场对变压器绕组的涡流损耗分析以及涡流损耗产生的温升的相关分析可以为变压器结构改进、减少损耗和提高运行可靠性提供理论依据。  相似文献   

7.
介绍了采用有限元计算软件计算漏磁场,得出变压器的短路电抗,然后利用绕组涡流损耗的有限元计算公式,计算变压器的绕组涡流损耗的方法。  相似文献   

8.
在电力变压器涡流损耗的工程计算方法中,往往只计算了变压器绕组的纵向涡流损耗,而忽略了横向涡流损耗,横向涡流损耗主要集中在绕组的端部位置,从而有造成绕组顶部温升过大的风险。本文中笔者以63000/110kV三绕组油浸式有载调压变压器为实例,通过有限元分析方法在磁场中计算了绕组的涡流损耗,并将损耗耦合到温度场中,得到了绕组的温度分布情况。  相似文献   

9.
180MVA/220kV电力变压器负载损耗超标分析   总被引:2,自引:1,他引:1  
张安红  刘军 《变压器》2004,41(8):1-6
以180MVA/220kV电力变压器负载损耗超标为例,利用漏磁场有限元软件对绕组涡流损耗进行了分析,讨论了变压器辐向漏磁对绕组涡流损耗的影响,提出了大型变压器磁势轴向布置原则.  相似文献   

10.
侯强 《电工技术》2017,(6):116-118
利用漏磁解析技术,对比分析变压器不同技术方案的阻抗及绕组涡流损耗,指出不同方案的优劣,认为合理选择绕组布置结构,有助于获得良好的技术性能数据和经济效益,保证产品长期安全运行。  相似文献   

11.
针对带中心抽头变压器在低压大电流场合应用时,并联绕组的布置方法对均流效果以及损耗的影响进行了研究。由于中心抽头变压器副边两个绕组是分时工作的,其并联绕组设计不同于单副边绕组变压器,不仅在并联绕组中存在电流不均分问题,而且邻近效应会在不工作绕组内产生涡流损耗。基于一维绕组模型和单副边绕组变压器并联绕组的均流方法,推导得到中心抽头变压器并联绕组的布置方法。该方法中参与工作的绕组的相对位置和单副边绕组一致,从而可使电流在并联绕组中均分,同时可减小不工作绕组由于邻近效应产生的涡流损耗。通过有限元分析和实验验证了该方法的正确性和有效性。  相似文献   

12.
变压器损耗是影响变压器运行性能的重要因素。在高频效应下,邻近效应与集肤效应会增加变压器绕组损耗。文章基于高频变压器绕组的三维模型,在考虑邻近效应与集肤效应的基础上,应用有限元法对变压器绕组中的涡流效应进行仿真计算。通过计算得出了改变绕组布局可以有减少绕组损耗的结论。并得到了不同绕组布局下,绕组损耗随频率、绕组厚度以及层间距的变化趋势。  相似文献   

13.
IEEE Std C57.110中给出了计算电流畸变情况下变压器损耗的计算方法,其利用绕组涡流谐波损耗因子和杂散谐波损耗因子计算变压器的涡流损耗和杂散损耗,但忽略了绕组高频交流情况下集肤效应和邻近效应引起的附加损耗,计算精度受到一定影响。为了精确计算变压器谐波情况下的损耗,引入了绕组电阻谐波损耗因子,考虑了谐波情况下绕组集肤效应引起的损耗,并据此计算变压器最大负荷电流。在此基础上,研究了电流畸变率对干式变压器降容率的影响,计算结果表明谐波对干式变压器最大负荷电流及带负载能力有较大影响,当谐波畸变率达到60%时,变压器带负荷能力减小一半。  相似文献   

14.
集肤和邻近效应对平面磁性元件绕组损耗影响的分析   总被引:4,自引:1,他引:4  
提高磁性元件的工作频率,可以减少磁性元件的大小。但是随着工作频率的提高,集肤和邻近效应使绕组的损耗增加。文中基于磁性元件绕组的一维模型,对平面磁性元件绕组中的涡流效应进行分析。利用一维条件下,集肤和邻近效应的正交性,得出了集肤和邻近效应各自产生的损耗随绕组厚度和频率的变化趋势,指出简单地把厚绕组分割为薄绕组的并联不能减少绕组的损耗;同时分析利用原副边绕组交叉换位技术减少变压器绕组损耗的原理。通过有限元分析软件和实验证实分析结果的正确性和有效性。  相似文献   

15.
Increased transformer winding losses are an important consideration in determining the overall impact of harmonic currents in a power system. Frequently, losses due to harmonic currents are assumed to vary with the square of frequency. The purpose of this paper is to compare winding loss calculations from a finite element method with measured losses in single phase distribution transformers and to test the principle of superposition of harmonic losses due to nonsinusoidal currents. The results confirm both the finite element method and the principle of superposition. Furthermore, it is shown that, due primarily to inaccuracy in measuring 60 Hz eddy current losses, application of the commonly accepted frequency squared rule can yield overly pessimistic loss predictions for typical power system harmonic frequencies.  相似文献   

16.
国内高压直流输电系统的发展对高压直流换流变压器性能要求愈来愈高.在换流变压器设计过程中,附加损耗是一项重要的参考指标.笔者介绍了基于趋肤深度控制的三维实体模型网格分层剖分方法和磁损耗计算方法,使用MagNet软件计算了一台换流变压器的构件损耗,并对国际基准模Problem 21B进行了验证性计算.基于Visual Ba...  相似文献   

17.
Transformers are critical components in power systems and their failure can cause long interruption of power supply. The condition of a transformer can be monitored by performing thermal analysis. The use of non-linear devices, such as rectifiers and converters, draws harmonic currents that increase losses in transformers, thereby increasing their operating temperature. In this article, a new numerical approach is presented for determining the rise in hot spot temperature in a 5-kVA, 400/400-V dry-type three-phase transformer laboratory prototype. The key novelty is that the additional winding eddy current loss due to non-linear loads is considered in the numerical modeling. The winding eddy current loss corresponding to harmonic distortion is estimated by conducting experiments and calculations. Numerical simulations are carried out for a wide range of non-linear loads using a commercial computational fluid dynamics package, FLUENT 6.3. The proposed numerical methodology is validated by performing experiments on the transformer for possible non-linear loads and comparing the measured hot spot temperature with the simulated values. Correlation equations for rise in hot spot temperature as a function of total harmonic distortion are presented, which can be used for estimating the life of transformers when connected to different types of loads.  相似文献   

18.
针对干式变压器箔绕导体具有面积大、厚度薄和激励与感应电流共存的特点分析,建立了绕组三维涡流场与等效电路计算模型,并利用场—路耦合方法对铜箔和铝箔两个方案的绕组涡流场、短路阻抗与附加损耗等性能参数进行了数值验证和优化分析.计算结果表明了方法的合理性,并由此获得了绕组漏磁场、导体涡流损耗分布规律和优化设计方案,为干式变压器设计和预防局部过热提供了一种有效的分析方法.  相似文献   

19.
A complete, three phase transformer model for the calculation of electromagnetic transients is presented. The model consists of a set of state equations solved with the trapezoidal rule of integration in order to obtain an equivalent Norton circuit at the transformer terminals. Thus the transformer model can be easily interfaced with an electromagnetic transients program. Its main features are: (a) the basic elements for the winding model are the turns; (b) the complete model includes the losses due to eddy currents in the windings and in the iron core; and (c) the solution of the state equations is obtained in decoupled iterations. For validation, the frequency response of the model is compared with tests on several transformers. Applications to the calculation of transients are given for illustration  相似文献   

20.
为应对大型电力变压器漏磁场及杂散损耗问题,采用三维非线性涡流场有限元分析方法,以1台高压自耦变压器为研究对象,引入B-H曲线来描述非线性材料的磁特性,对变压器结构件进行了漏磁场及涡流损耗计算。采用屏蔽措施之前,油箱及夹件等结构件涡流损耗及涡流损耗密度较大,容易引起局部过热问题并且影响变压器正常运行。通过进一步分析,给出了油箱磁屏蔽、夹件L型磁屏蔽和肺叶式磁屏蔽等降低杂散损耗的措施,以及多种屏蔽形式对漏磁场及结构件涡流损耗的影响。结果表明对电力变压器油箱、夹件等结构件采取合理的磁屏蔽措施能够有效地降低杂散损耗并消除热点,不同屏蔽形式对其周围结构件涡流损耗及漏磁场具有不同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号