首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study was conducted to determine the presence of Salmonella spp. in raw broilers and shell eggs in Korea. In total, 135 dozen shell eggs and 27 raw broilers were tested. None of the egg yolks were found to contain Salmonella organisms but Escherichia coli, Escherichia hermanii, and Citrobacter freundii were isolated from egg shells. Salmonella spp. were detected in 25.9% of raw broilers, and Salmonella serotypes isolated from raw broilers were Salmonella Enteritidis, Salmonella Virchow, and Salmonella Virginia. D-values and antibiotic resistance of Salmonella isolates were also investigated. D-values of Salmonella enteritidis, Salmonella Virginia, and Salmonella Virchow in tryptic soy broth at 55 degrees C were 2.36, 2.13, and 0.70 min and 0.53, 0.37, and 0.20 min at 60 degrees C, respectively. All Salmonella isolates showed multiple antibiotic resistance patterns and were resistant to penicillin and vancomycin. One strain of Salmonella Enteritidis showed resistance to 12 antibiotics used in this study.  相似文献   

3.
A study was done to determine the survival, growth, and inactivation characteristics of unadapted, acid-adapted, and acid-shocked Shigella flexneri 2a cells as affected by pH and temperature. The pathogen was grown at 37 degrees C for 18 h in tryptic soy broth containing no glucose (TSBNG) (unadapted cells) and TSBNG supplemented with 1% glucose (TSBG) (acid-adapted cells). Cells grown in TSBNG were acid-shocked by adjusting 18-h cultures to pH 4.5+/-0.05 with lactic acid. All three cell types were separately inoculated into tryptic soy broth (6.6-7.0 log(10) cfu/ml) containing 0.25% glucose (TSB) acidified to pH 3.5-5.5 with lactic acid and incubated at 4, 12, 21, 30, and 48 degrees C for up to 144 h. Overall, inactivation of S. flexneri cells at low pH was enhanced with an increase in incubation temperature. All three types of cells survived for 144 h at 4 degrees C in TSB acidified to pH 3.5, compared to < 24 h at 30 degrees C and 2 h at 48 degrees C. The population of all three cell types increased significantly (alpha = 0.05) within 24 h when cells were incubated at 12, 21, or 30 degrees C in TSB at pH 5.0, 5.5, or 7.3. Prior exposure of the S. flexneri to an acidic environment (acid-adapted or acid-shocked cells) resulted in increased resistance to extreme acid and temperature conditions. Acid-adapted cells decreased by approximately 2.5 log(10) cfu/ml when incubated at 4 degrees C for 144 h, compared to a 6-log(10) reduction in control (unadapted) cells. When cells were exposed to low pH (3.5-4.5) and high temperature (48 degrees C), significantly higher (alpha = 0.05) populations were recovered on tryptic soy agar (TSA) than on TSA supplemented with 4% NaCl (TSAS), indicating that a portion of S. flexneri cells were injured. Results show that the ability of S. flexneri to survive and grow at a given pH is influenced by previous exposure to acidic environments and by incubation temperature.  相似文献   

4.
The heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of the antimicrobials carvacrol and cinnamaldehyde was tested at temperatures ranging from 55 to 62.5 degrees C. Inoculated meat packaged in bags was completely immersed in a circulating water bath, cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5 degrees C, and then held for predetermined lengths of time ranging from 210 min at 55 degrees C to 5 min at 62.5 degrees C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time for the bacteria to decrease by 90%) in the control beef ranged from 63.90 min at 55 degrees C to 1.79 min at 62.5 degrees C. D-values determined by a logistic model ranged from 43.18 min (D1, the D-value of a major population of surviving cells) and 89.84 min (D2, the D-value of a minor subpopulation) at 55 degrees C to 1.77 (D1) and 0.78 min (D2) at 62.5 degrees C. The thermal death times suggested that to achieve a 4-D reduction, contaminated processed ground beef should be heated to an internal temperature of 60 degrees C for at least 30.32 min. Significantly increased sensitivity to heat (P < 0.05) was observed with the addition and/or increasing levels of carvacrol or cinnamaldehyde from 0.5 to 1.0%. The observed thermal death times may facilitate the design of acceptance limits at critical control points for ground beef at lower times and temperatures of heating.  相似文献   

5.
Survival and growth characteristics of unadapted, acid-adapted, and acid-shocked Shigella flexneri 2a cells in acidified (pH 3.5 to 5.5) tryptic soy broth with 0.25% glucose (TSB) and tryptic soy agar (TSA) were determined. S. flexneri was grown at 37 degrees C for 18 h in tryptic soy broth without glucose (TSBNG) (unadapted) and TSBNG supplemented with 1% glucose (TSBG) (acid-adapted). Cells grown in TSBNG were acid shocked by adjusting 16-h cultures to pH 5.05 +/- 0.05 with lactic acid. Cells were then inoculated into TSB acidified with acetic, lactic, or propionic acids to pH 5.5, 4.5, or 3.5 and incubated at 37 degrees C for 6 h. The order of lethality at a given pH was lactic acid < acetic acid < propionic acid. Significantly (P < or = 0.05) higher numbers of acid-adapted cells, compared to acid-shocked and unadapted cells, were recovered from TSB acidified (pH 3.5) with lactic or acetic acids. None of the cells survived a 30-min exposure in TSB acidified with propionic acid to pH 3.5. When the three cell types were plated on TSA acidified with lactic, acetic, or propionic acids at pH < or = 4.5, < or = 5.5, and < or = 5.5, respectively, visible colonies were not detected. Viable unadapted, acid-adapted, and acid-shocked cells were, however, recovered from TSA acidified with all three acids at pH > or = 4.5. Acid-adapted and, to a lesser extent, acid-shocked cells survived at lower pH than did unadapted cells, indicating that prior exposure to mild acidic environment results in increased acid resistance. Survival of S. flexneri at a given pH was influenced by the type of acidulant used, a response characteristic exhibited by other gram-negative enteric pathogens.  相似文献   

6.
A solid agar overlay method was developed for recovery of heat-injured Listeria monocytogenes. Presolidified nonselective tryptic soy agar with 0.6% yeast extract (TSAYE, 2% agar) was overlaid on top of solidified modified Oxford agar (MOX). Heat injury of L. monocytogenes was conducted at 58 degrees C for 6 min in a jacketed flask filled with tryptic soy broth. Both noninjured and heat-treated L. monocytogenes cells were plated onto TSAYE, MOX, and TSAYE-MOX plates. No significant differences (P > 0.05) in recovery were found among the three media for noninjured bacterial cells. Recovery of heat-injured L. monocytogenes cells on TSAYE-MOX overlay plates was equivalent to that on the nonselective TSAYE medium, whereas recovery on the selective MOX medium was significantly lower (P < 0.05) compared with both TSAYE and the overlay plates. There were no significant differences (P > 0.05) among the overlay plates prepared 0, 2, 4, 6, 8, 16, and 24 h prior to plating heat-injured bacterial cells. The TSAYE-MOX overlay also allowed differentiation of L. monocytogenes from a mixture of four other types of foodborne pathogens. This solid agar overlay method for recovery of heat-injured L. monocytogenes cells is less time-consuming and less complicated than the conventional overlay-underlay technique and the double overlay modification of the thin agar layer method and may allow for greater laboratory plating efficiencies.  相似文献   

7.
ABSTRACT:  This study presents mathematical models that describe the inactivation of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Senftenberg suspended in liquid whole egg (LWE) by irradiation followed by heat treatments (IR-H treatments). These models also enable prediction of cell injury in Salmonella after exposure to IR-H. Salmonella viability decreased exponentially (primary model) with heat treating time for all the radiation doses (0, 0.1, 0.3, 0.5, 1.0, and 1.5 kGy) and temperatures investigated (55, 57, and 60 °C). Two secondary models that related the DT values (time required to eliminate 90% of viable cells at a given temperature) with radiation dose, heating temperature, and recovery medium after treatments were also developed. The developed final equations enabled to establish the process criterion (combinations of irradiation doses, temperature, and heat treatment times) required to achieve a given reduction ( performance criterion ) in Salmonella spp. suspended in LWE or the cell damage caused by the treatments. Process criteria to obtain the established performance criteria (a 5-log10 reduction) on any of the investigated Salmonella serovars were determined to be, 57.7 °C/3.5 min following 1.5 kGy when treated cells were recovered in tryptic soy agar and 59.3 °C/3.5 min following 0.5 kGy when cells were recovered in tryptic soy agar amended with 3% NaCl. Based on our results, current industrial LWE heat treatments (60 °C/3.5 min) would inactivate 3 log10 cycles of the Salmonella population. The results of this study can be applied to engineering design and for the evaluation and optimization of the IR-H process as a new technique to obtain Salmonella -free LWE.  相似文献   

8.
Xylose lysine decarboxylase (XLD) medium, a selective plating medium, can inhibit heat-injured Salmonella typhimurium from growing, whereas tryptic soy agar (TSA), a nonselective medium, does not. To facilitate recovery of heat-injured S. typhimurium cells while providing selectivity of isolation of S. typhimurium from other bacteria in the sample, a thin agar layer (TAL) procedure was developed by overlaying 14 ml of nonselective medium (TSA) onto prepoured and solidified XLD medium in a 8.5 cm diameter Petri dish. During the first few hours of incubating the plate, the injured S. typhimurium repaired and started to grow in the TSA. During the resuscitation of injured cells, the selective agents from XLD were diffused to the TSA top layer part. Once the selective agents diffused to the top part of the TAL, the resuscitated S. typhimurium started to produce a typical reaction (black color) and other microorganisms were inhibited by the selective agents. The recovery rate for heat-injured (55 degrees C for 15 min) S. typhimurium with the TAL method was compared with TSA, XLD, and the traditional overlay method (OV; pouring selective agar on top of resuscitated cells on TSA agar 3-4 h after incubation). No significant difference occurred among TSA, OV, and TAL (P > 0.05) for enumeration of heat-injured S. typhimurium, but they recovered significantly higher numbers than from XLD agar (P < 0.05).  相似文献   

9.
Thermal inactivation of a four-strain mixture of E. coli O157:H7 was determined in lean ground turkey, lamb and pork. Inoculated meat was packaged in bags completely immersed in a circulating water bath and held at 55, 57.5, 60, 62.5, and 65°C for predetermined lengths of time. The surviving cell population was enumerated by spiral plating meat samples on tryptic soy agar overlaid with Sorbitol MacConkey agar. D-values, determined by linear regression, in turkey were 11.51, 3.59, 1.89, 0.81 and 0.29 min at 55, 57.5, 60, 62.5 and 65°C, respectively (z=6.5°C). When a survival model was fitted to the non-linear survival curves, D-values in turkey ranged from 11.26 min at 55°C to 0.23 min at 65°C (z=6°C). When the E. coli O157:H7 four-strain cocktail was heated in ground pork or lamb, D-values calculated by both approaches were similar at all temperatures. Thermal-death-times from this study will assist the retail food industry to design cooking regimes that ensure safety of ground muscle foods contaminated with E. coli O157:H7.  相似文献   

10.
We investigated the heat resistance of an eight-strain cocktail of Salmonella serovars in chicken supplemented with trans cinnamaldehyde (0 to 1.0%, wt/wt) and carvacrol (0 to 1.0%, wt/wt). Inoculated meat was packaged in bags that were completely immersed in a circulating water bath and held at 55 to 71°C for predetermined lengths of time. The recovery medium was tryptic soy agar supplemented with 0.6% yeast extract and 1% sodium pyruvate. D-values in chicken, determined by linear regression, were 17.45, 2.89, 0.75, and 0.29 min at 55, 60, 65, and 71°C, respectively (z = 9.02°C). Using a survival model for nonlinear survival curves, D-values in chicken ranged from 13.52 min (D(1), major population) and 51.99 min (D(2), heat-resistant subpopulation) at 55°C to 0.15 min (D(1)) and 1.49 min (D(2)) at 71°C. When the Salmonella cocktail was in chicken supplemented with 0.1 to 1.0% trans-cinnamaldehyde or carvacrol, D-values calculated by both approaches were consistently less at all temperatures. This observation suggests that the addition of natural antimicrobials to chicken renders Salmonella serovars more sensitive to the lethal effect of heat. Thermal death times from this study will be beneficial to the food industry in designing hazard analysis and critical control point plans to effectively eliminate Salmonella contamination in chicken products used in this study.  相似文献   

11.
Bacterial injury, including leakage of intracellular substance and viability loss, of Escherichia coli K-12 (ATCC 23716) and Salmonella Enteritidis (ATCC 13076) inoculated in liquid egg white and liquid whole egg was determined by thermal death time disk. E. coli K-12 and Salmonella Enteritidis were inoculated in liquid egg white and liquid whole egg to a final count of 7.8 log CFU/ml and were thermally treated with thermal death time disks at room temperature (23"C), 54, 56, 58, and 60 degrees C from 0 to 240 s. Sublethal injury, leakage of intracellular substances, and viability loss of E. coli K-12 and Salmonella Enteritidis was investigated by plating 0.1 ml on selective trypticase soy agar containing 3% NaCl, 5% NaCl, sorbitol MacConky agar, and xylose lysine sodium tetradecylsulfate and nonselective trypticase soy agar. No significant (P > 0.05) differences on percent injury or viability loss for E. coli K-12 and Salmonella populations were determined in all samples treated at 23 degrees C. Sublethal injury occurred in E. coli and Salmonella populations at 54 degrees C or above for 120 s. Viability losses for both bacteria averaged 5 log at 54 degrees C or above for 180 s, and the surviving populations were below detection (<10 CFU/ml). Thermal treatment at 40 degrees C and above led to membrane damage, leakage, and accumulation of intracellular ATP from 2 to 2.5 log fg/ml and UV-absorbing substances of 0.1 to 0.39 in the treated samples. These results indicate similar thermal injury/damage on both E. coli and Salmonella membranes as determined by the amount of inactivation, viability loss, and leakage of intracellular substances of bacteria.  相似文献   

12.
Rates of inactivation of a five-strain mixture of green fluorescent protein-labeled Escherichia coli O157:H7 in autoclaved and unautoclaved commercial cow manure compost with a moisture content of ca. 38% were determined at temperatures of 50, 55, 60, 65, and 70 degrees C. Trypticase soy agar with ampicillin was determined to be the best medium for the enumeration of heat-injured and uninjured cells of green fluorescent protein-labeled E. coli O157:H7. The results obtained in this study revealed that in autoclaved compost, E. coli O157:H7 reductions of ca. 4 log CFU/g occurred within 8 h, 3 h, 15 min, 2 min, and < 1 min at 50, 55, 60, 65, and 70 degrees C, respectively. At 65 and 70 degrees C, considerably less time was required to kill the pathogen in unautoclaved compost than in autoclaved compost. Decimal reduction times (D-values) for autoclaved compost at 50, 55, 60, 65, and 70 degrees C were 137, 50.3, 4.1, 1.8, and 0.93 min, respectively, and D-values for unautoclaved compost at 50, 55, and 60 degrees C were 135, 35.4, and 3.9 min, respectively. Considerable tailing was observed for inactivation curves, especially at 60, 65, and 70 degrees C. These results are useful for identifying composting conditions that will reduce the risk of the transmission of E. coli O157:H7 to foods produced in the presence of animal fecal waste.  相似文献   

13.
The effects and interactions of 27 combinations of heating temperature (57.5 to 62.5 degrees C), sodium pyrophosphate (SPP) level (0 to 0.5%, wt/vol), and salt (NaCl) level (0 to 6%, wt/vol) on the thermal inactivation of starved Listeria monocytogenes ATCC 19116 in pork slurry were investigated. A split-split plot experimental design was used to compare all 27 combinations. L. monocytogenes survivors were enumerated on tryptic soy agar supplemented with 0.6% yeast extract. The natural logarithm (loge) of the means of decimal reduction times (D-values) were modeled as a function of temperature, SPP level, and NaCl level. Increasing concentrations of SPP or NaCl protected starved L. monocytogenes from the destructive effect of heat. For example, D-values for the pathogen at 57.5 degrees C in pork slurry with 0, 3, and 6% NaCl were 2.79, 7.75, and 14.59 min, respectively. All three variables interacted to affect the thermal inactivation of L. monocytogenes. A mathematical model describing the combined effect of temperature, SPP level, and NaCl level on the thermal inactivation of starved L. monocytogenes was developed. There was strong correlation (R2 = 0.97) between loge D-values predicted by the model and those observed experimentally. The model can predict D-values for any combination of variables that falls within the range of those tested. This predictive model can be used to assist food processors in designing thermal processes that include an adequate margin of safety for the control of L. monocytogenes in processed meats.  相似文献   

14.
A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain EO139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37 degrees C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of < or =5.4, < or =4.5, < or =4.2, or < or =4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P< or =0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.  相似文献   

15.
A thin agar layer (TAL) method was developed to recover heat-injured Listeria monocytogenes. Modified Oxford medium (MOX), a selective plating medium, inhibits heat-injured L. monocytogenes from growing, whereas tryptic soy agar (TSA), a nonselective medium, does not. In order to facilitate recovery of heat-injured L. monocytogenes cells while providing selectivity of isolation of L. monocytogenes from other bacteria in the sample, a unique TAL procedure was developed by overlaying 5 ml of nonselective medium (TSA) onto prepoured and solidified MOX medium in an 8.5-cm-diameter petri dish. The injured L. monocytogenes repaired and started to grow in the TSA during the first few hours after incubation of the plate. During the resuscitation of injured cells, the selective agents from MOX diffused to the TSA top layer to inhibit other microorganisms. L. monocytogenes showed a typical reaction (black colonies) on TAL after 24 h of incubation at 37 degrees C. The recovery rate for heat-injured L. monocytogenes with the TAL method was compared with those rates associated with TSA, MOX, and the traditional overlay method (OV; pouring selective agar on top of resuscitated cells on TSA agar after 3 h incubation). Milk and 0.1% peptone water that were inoculated with L. monocytogenes (4 to 5 log CFU/ml) were heated for 15 min at 55 degrees C. L. monocytogenes was enumerated on TSA, MOX, OV, and TAL media and procedures. No significant difference occurred among TSA, OV, and TAL (P > 0.05) in terms of enumeration of heat-injured L. monocytogenes, but these media recovered significantly higher numbers than did MOX agar (P < 0.05)-in both samples. The TAL method involves only one step, whereas OV is a more cumbersome two-step procedure.  相似文献   

16.
Growth and survival of six human isolates of the pathogenic Arcobacter spp. in the presence of selected environmental factors were studied. Four strains of Arcobacter butzleri and two strains of Arcobacter cryaerophilus were exposed to pH levels of 3.5 to 8.0. Most strains grew between pH 5.5 and 8.0, with optimal growth of most A. butzleri and A. cryaerophilus strains at pH 6.0 to 7.0 and 7.0 to 7.5, respectively. The 24-h optimal growth range in the presence of NaCl was 0.5 to 1.0% for A. cryaerophilus. However, after 96 h, the optimum was between 0.5 and 2.0% NaCl. The optimum range for growth of A. butzleri strains was 0.09 to 0.5% NaCl after 96 h. The upper growth limits were 3.5 and 3.0% NaCl for A. butzleri and A. cryaerophilus, respectively. Survival at 25 degrees C in up to 5% NaCl was noted for A. butzleri 3556 and 3539 and A. cryaerophilus 3256. Decimal reduction times (D-values) at pH 7.3 in phosphate-buffered saline for three A. butzleri strains were 0.07 to 0.12 min at 60 degrees C, 0.38 to 0.76 min at 55 degrees C, and 5.12 to 5.81 min at 50 degrees C. At pH 5.5, decreased thermotolerance was observed, with D-values of 0.03 to 0.11 min at 60 degrees C, 0.30 to 0.42 min at 55 degrees C, and 1.97 to 4.42 min at 50 degrees C. Calculated z-values ranged from 5.20 to 6.28 degrees C. D-values of a three-strain mixture of A. butzleri in raw ground pork were 18.51 min at 50 degrees C and 2.18 min at 55 degrees C. Mild heat (50 degress C) followed by cold shock (4 or 8 degrees C exposure) had a synergistic lethal effect, reducing more cells than with an individual 50 degrees C treatment or with cold shock temperatures of 12 or 16 degrees C.  相似文献   

17.
The preliminary heat resistance evaluation of 94 Salmonella strains was carried out in culture medium (Trypticase soy broth, TSB). The heat resistance of three S. typhimurium strains (ATCC 14028, 133 and 1116), a strain each of S. derby B4373, S. potsdam 1133, S. menston 179. S. eppendorf 166, and S. kingston I124 was determined also in pork meat containing curing additives. As expected, the eight Salmonella strains showed greater heat resistance in pork meat than in TSB. At the lowest temperature (58 degrees C), the heat resistance increased 1.5-4 times, and it was most pronounced for the strains being most heat sensitive in TSB. S. potsdam 133 was the most resistant strain in pork meat, with D-values at 58 degrees C, 60 degrees C and 63 degrees C of 4.80, 1.57 and 0.30 min, respectively. The most sensitive strain turned out to be S. kingston 1124, with D-values of 2.79. 0.92 and 0.24 min, at the same temperatures. According to collected data, the heating processes, as applied to cured pork meat, providing an internal temperature of 60 degrees C for 9-10 min or of 63 degrees C for 3-4 min can be expected to provide a > or = 7 D kill of Salmonella belonging to the serotypes studied.  相似文献   

18.
Phenolics are one category of phyto-antimicrobials that refer to the antimicrobial substances extracted from plant sources. This study was undertaken to determine the influence of blueberry and muscadine phenolic extracts on the growths of 2 important foodborne bacterial pathogens, Salmonella Enteritidis and Listeria monocytogenes. Cells of S. Enteritidis (n = 4) or L. monocytogenes (n = 4) strains were inoculated (3 log CFU/mL) into tryptic soy broth (TSB) supplemented with 46.25 ppm of muscadine phenolics and 24 ppm of blueberry phenolics, respectively. The inoculated and un-inoculated broth with or without the supplemented phenolics were incubated at 37 °C for 24 h. Samples were drawn periodically, and cell populations of Salmonella and Listeria were determined on tryptic soy agar (TSA). It was observed that Salmonella was relatively more susceptible than Listeria to the phenolic extracts used in the study. The growth of Salmonella was significantly inhibited in all samples at all sampling points except for the sample that was supplemented with muscadine water extract and drawn at the 24-h sampling point. Blueberry phenolics were relatively more effective than muscadine phenolic extracts in inhibiting the growth of Salmonella. One tested strain of Listeria was more susceptible to ethanol than water phenolic extracts. The study revealed the potentials and limitations of using blueberry and muscadine phenolics to control the growths of selected Salmonella and Listeria strains.  相似文献   

19.
Listeria innocua was subjected to thermal inactivation and the extent of heat-injured cells was quantified. Cultures were heated in liquid medium for different times, using temperatures in the range of 52.5 to 65.0 degrees C, and plated on Tryptic Soy Agar with 0.6% yeast extract (TSAYE) used as non-selective medium and on TSAYE plus 5% NaCl (TSAYE+NaCl) and Palcam agar with selective supplement (Palcam agar) as selective media. The difference observed in counts in non-selective and in selective media gave an indication of cell injury during the heat treatment. D- and z- values were calculated for all conditions considered. For each temperature, D-values obtained using non-selective recovery procedures were higher than the ones obtained using the two selective media. When comparing the selective media, it can be concluded that Palcam agar allowed recovery and growth of thermally injured cells and so it was less inhibitor than TSAYE+NaCl. Another important result was the influence of temperature on the degree of cellular injury. As temperature increases, the degree of heat-injured cells also increases, and consequently concern has to be taken with the temperature and the counting medium used in food processing studies. The results of this work clearly demonstrated that selective media used for Listeria monocytogenes enumeration/detection might not be suitable for the recovery of heat-injured cells, which can dangerously underestimate the presence of this foodborne pathogen.  相似文献   

20.
Survival and growth of Escherichia coli O157:H7 and Listeria monocytogenes in strawberry juice and acidified media at different pH levels (pH 3.4 to 6.8) and temperatures were studied. Sterile strawberry juice (pH 3.6) and acidified trypticase soy broth (TSB) media (pH 3.4 to 6.8) were inoculated with approximately 6.7 log CFU/ml E. coli O157:H7 or 7.3 log CFU/ ml L. monocytogenes, incubated for 3 days at 4 and 37 degrees C. Bacterial levels were determined after 2 h, 1 day, and 3 days using surface plating nonselectively on tryptic soy agar and selectively on sorbitol MacConkey agar for E. coli O157:H7 or modified Oxford agar for L. monocytogenes. A spectrophotometer (660 nm) was also used to study growth inhibition of L. monocytogenes in different TSB and strawberry juice media (pH 3.4 to 7.3). E. coli O157:H7 survived well at pH values of 3.4 to 6.8 at 4 degrees C, but the number of injured cells increased as pH decreased and incubation time increased. At 37 degrees C, E. coli O157:H7 was inactivated at pH of < or = 3.6 but could grow at pH 4.7. L. monocytogenes was quickly injured at pH of < or = 4.7 within 2 h of storage at 4 degrees C and then was slightly and gradually inactivated as storage time increased. L. monocytogenes survived well at pH 6.8 at 4 degrees C and grew well at 37 degrees C. Growth of L. monocytogenes at 37 degrees C was inhibited in TSB by 1% citric acid and 0.5% malic acids at pH 3.4 or by 50% strawberry juice at pH 4.7. Bacterial injury and inactivation appeared to be induced by the acids in strawberry juice. The acids, pH value, temperature, and time were important factors for bacterial survival, inactivation, and growth in the media tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号