首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This report deals with an ultrastructural investigation of the synapses on the somata of central chromatolytic anterior horn neurons of seven patients with amyotrophic lateral sclerosis (ALS) and four patients with lower motor neuron disease (LMND) who had no upper motor neuron or corticospinal tract involvement. Specimens from 24 age-matched individuals who died of non-neurological diseases served as controls. We examined a total of 171 anterior horn neurons with central chromatolysis (51 from ALS, 42 from LMND and 78 from controls), and 174 normal-appearing anterior horn neurons as controls. The cross-sectional area, the number of synapses, and the length of active zone were significantly reduced in the chromatolytic neurons of both patients and controls as compared with normal-appearing neurons of the controls (p < 0.0001). However, regarding chromatolytic neurons, no significant differences were seen in the number of synapses, length of each individual synapse, and length of its active zone between patients and controls and also in the frequency of presynaptic alterations on the somata. There was no overall difference between ALS and LMND patients in any of these parameters. Our findings suggest that the flow of electrophysiological information from afferent fibers to the somata may be greatly impaired in central chromatolytic neurons of both control individuals and patients with motor neuron disease (MND), and that the observed synaptic alterations may reflect pathological events resulting from anterior horn neuron degeneration. It may represent a compensatory mechanism of the synapses for diminished synaptic function that synapses were relatively well preserved on the somata of central chromatolytic neurons of the MND patients as compared with those of the chromatolytic neurons of the controls despite of markedly reduced cross-sectional area in the former. It also suggests that the pathomechanism involved in central chromatolysis differs between normal individuals and patients with MND.  相似文献   

2.
The first part of this paper summarizes the main pathological features of sporadic amyotrophic lateral sclerosis (ALS) and familial amyotrophic lateral sclerosis (FALS). In both diseases, the primary lesion consists of degeneration of both upper and lower motor neurons, resulting in severe neuronal loss, particularly in the spinal cord. An important difference between sporadic ALS and FALS is in the involvement of sensory and spinocerebellar projections in the latter. The second part of the paper will compare the familial form of ALS with its recently described transgenic murine model. The production of this model followed the discovery that FALS is tightly linked to several different mutations in the enzyme Cu,Zn superoxide dismutase (SOD), a ubiquitous enzyme involved in the dismutation of superoxide anion to hydrogen peroxide. A human transgene with one of the identified mutations was expressed in mice, and the resulting progeny developed clinical and pathological changes that, in the late stages of disease, were very similar to those in patients with FALS. There was, in fact, exquisite degeneration of motor neurons in spinal cord and brain stem, as well as degeneration of white matter tracts of the spinal cord, of the anterior roots and neurogenic atrophy of skeletal muscles, as described in patients with FALS. Beckman and colleagues postulated that mutations in SOD may alter the structure of the copper active site with resultant decrease in superoxide anion dysmutation while favoring an increase in reactivity with other radicals such as peroxynitrite. The formation of nitronium-like intermediate could damage proteins, particularly by nitration of tyrosine residues. Nitration of tyrosine kinases and altered phosphorilation of neurofilaments could be particularly damaging for motor neurons.  相似文献   

3.
Spinal interneuronal networks have been implicated in the coordination of reflex behaviors and limb postures in the spinal frog. As a first step in defining these networks, retrograde transport of horseradish peroxidase (HRP) was used to examine the anatomical organization of interneuronal circuitry in the lumbar spinal cord of the frog. Following neuronal degeneration induced by spinal transection and section of the dorsal and ventral roots, HRP was placed at different locations in the spinal cord and the positions of labeled neuronal cell bodies plotted using a Eutectics Neuron Tracing System. We describe four spinal interneuronal systems, three with cell bodies located in the lumbar cord and one with descending projections to the lumbar cord. Interneurons with cell bodies located in the lumbar cord include: (1) Lumbar neurons projecting rostrally. Those projecting to thoracic segments tended to be located in the lateral and ventrolateral gray and in the lower two-thirds of the dorsal horn, with projections that were predominantly uncrossed. Those projecting to the brachial plexus and beyond were located in the dorsal part of the dorsal horn (uncrossed) and in the lateral, ventrolateral, and ventromedial gray (crossed). (2) Lumbar neurons with segmental projections within the lumbar cord. These neurons, which were by far the most numerous, had both uncrossed and crossed projections and were distributed throughout the dorsal, lateral, ventrolateral, and ventromedial gray matter. (3) Lumbar neurons projecting to the sacral cord. This population, which arose mainly from the dorsal horn and lateral or ventrolateral gray, was much smaller than in the other systems. Neuronal density of some of these populations of lumbar interneurons appeared to vary with rostrocaudal level. Finally, a population of neurons with cell bodies in the brachial and thoracic segments that projects to the lumbar cord is described. The most rostral of these neurons were multipolar cells with uncrossed projections, while those with crossed projections were confined almost exclusively to the ventral half of the cord. The distribution of spinal interneurons reported here will provide guidance for future studies of the role of interneuronal networks in the control of movements using the spinal frog as a model system.  相似文献   

4.
Aberrant neurofilament (NF) phosphorylation in the soma of the ventral horn neurons of neonatal rat spinal cord is observed following exposure to cerebrospinal fluid (CSF) of patients suffering from Amyotrophic Lateral Sclerosis (ALS). CSF samples from ALS and non-ALS neurological patients were injected into the spinal subarachnoid space of 3 day old rat pups. After 48 h, sections of spinal cords were stained for the presence of phosphorylated NF epitopes with SMI-31 antibody. The number of neuronal soma staining with this antibody in the ventral and dorsal horns sides of the spinal cord was counted. There was a significant 3-fold increase in the number of soma stained with SMI-31 antibody in the ventral horns of rat spinal cords exposed to CSF of patients with ALS compared to cords from rats exposed to CSF of non-ALS patients and those which were not exposed to any CSF samples. Such an increase in staining of neuronal soma was not observed in the dorsal horns. Hyperphosphorylation of neuronal soma suggests an initial stage of degenerative changes occurring in the motor (ventral horn) neurons following exposure to circulating factor(s) in the CSF of patients with ALS.  相似文献   

5.
Skeins or skein-like inclusions (SLIs) in motor neurons detected by ubiquitin immunohistochemistry are a characteristic finding of amyotrophic lateral sclerosis (ALS). Here we report ubiquitinated SLIs in the putamen and caudate nucleus from a case of ALS with dementia. A 48-year-old Japanese man developed apathy and amimia. Mental and neurological examinations revealed severe character change, muscle atrophy and fasciculation of the distal upper extremities and the tongue, and an exaggeration of the deep tendon reflex. He subsequently showed dysphagia and dysarthria. He died at the age of 51 years, after a total clinical course of about 2.5 years. By immunohistochemistry, ubiquitin-immunoreactive intraneuronal inclusions were observed in the spinal anterior horn cells, the frontal, temporal and entorhinal cortices, dentate fascia of the hippocampus and the amygdala. In addition, ubiquitinated inclusions were also seen in the putamen and caudate nucleus, which appeared as aggregates of thread-like structures similar to SLIs in the spinal anterior horn neurons. They were not seen on hematoxylin-eosin staining, and they also did not show any argentophilia nor did they react with other antibodies, including antibody against tau protein. To our knowledge, this is the first report of the presence of SLIs in non-motor neurons. Our results thus support the notion that ALS is a multisystem disease, and not simply a disease of the motor neurons.  相似文献   

6.
7.
We studied the possible impairment of fast axonal transport in patients with amyotrophic lateral sclerosis (ALS) to gain some insight into the pathogenesis of the disease. We carried out an ultrastructural investigation of the proximal axons (axon hillock and initial segment) of the anterior horn neurons on samples from 11 ALS patients; specimens from 12 age-matched individuals who died of nonneurological diseases served as controls. Eighty-seven proximal axons that emanated directly from normal-appearing neurons were examined in each group of subjects. Increased smooth endoplasmic reticulum (SER) and the formation of bundles of fibrillary SER with a single unit membrane were not uncommonly observed in the initial segment of the patients with ALS. In some instances, there was loss of the parallel SER arrangement along the longitudinal axis. When viewed in transverse sections, the bundles had a tubular appearance. These morphologic changes of SER were exclusively demonstrated in patients with ALS. A marked increase or accumulation of mitochondria and lysosomes was more common in the proximal axons, particularly in the axon hillock, of ALS patients than of control subjects. The accumulation of these membrane-bounded cytoplasmic organelles suggests that fast axonal transport is impaired in the proximal axons of individuals with ALS. In addition, there were Lewy body-like hyaline inclusions, lipofuscin granules, and multiple membranous structures in the proximal axons. The presence of these unusual structures may also be a reflection of axonal transport dysfunction. By contrast, in the central chromatolytic neurons, there was not only a decrease in the number of neurofilaments in the axon hillock and initial segment, but also of mitochondria, lysosomes, and SER. In some instances, none of these cytoplasmic organelles was seen. These findings support the notion that the outflow of cytoplasmic constituents from the anterior horn cell body into the proximal axon may be impaired in central chromatolytic neurons.  相似文献   

8.
The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.  相似文献   

9.
Activation of neurons in the midbrain periaqueductal gray (PAG) inhibits spinal dorsal horn neurons and produces behavioral antinociception in animals and analgesia in humans. Although dorsal horn regions modulated by PAG activation contain all three opioid receptor classes (mu, delta, and kappa), as well as enkephalinergic interneurons and terminal fields, descending opioid-mediated inhibition of dorsal horn neurons has not been demonstrated. We examined the contribution of dorsal horn mu-opioid receptors to the PAG-elicited descending modulation of nociceptive transmission. Single-unit extracellular recordings were made from rat sacral dorsal horn neurons activated by noxious heating of the tail. Microinjections of bicuculline (BIC) in the ventrolateral PAG led to a 60-80% decrease in the neuronal responses to heat. At the same time, the responses of the same neurons to iontophoretically applied NMDA or kainic acid were not consistently inhibited. The inhibition of heat-evoked responses by PAG BIC was reversed by iontophoretic application of the selective mu-opioid receptor antagonists, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). A similar effect was produced by naloxone; however, naloxone had an excitatory influence on dorsal horn neurons in the absence of PAG-evoked descending inhibition. This is the first demonstration that endogenous opioids acting via spinal mu-opioid receptors contribute to brain stem control of nociceptive spinal dorsal horn neurons. The inhibition appears to result in part from presynaptic inhibition of afferents to dorsal horn neurons.  相似文献   

10.
The distribution of somatic, fibre-like and punctate, non-somatic reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity was examined in dog spinal cord using horizontal, sagittal and transverse sections. The morphological features of NADPH diaphorase exhibiting neurons divided into six different neuronal types (N1-N6) were described and their laminar distribution specified. Major cell groups were identified in the superficial dorsal horn and around the central canal at all spinal levels, and in the intermediolateral cell column at thoracic level. NADPH diaphorase exhibiting neurons of the pericentral region were distributed in a thin subependymal cell column containing longitudinally-arranged small bipolar neurons with processes penetrating deeply into the intermediolateral cell column and/or running rostrocaudally in the subependymal layer. The second pericentral cell column located more laterally in lamina X contains large, intensely-stained NADPH diaphorase exhibiting neurons with long dendrites radiating in the transverse plane. Neurons of the sacral parasympathetic nucleus seen in segments S1-S3 exhibited prominent NADPH diaphorase activity accompanied by heavily-stained fibres extending from Lissauer's tract through lamina I along the lateral edge of the dorsal horn to lamina V. A massive dorsal gray commissure, with high NADPH diaphorase activity, was found in segments S1-S3. At the same segmental level a prominent group of moderately-stained motoneurons was detected in the dorsolateral portion of the anterior horn. Fibre-like NADPH diaphorase activity was found in the superficial dorsal horn and pericentral region in all segments studied. Punctate, non-somatic NADPH diaphorase activity was detected in the superficial dorsal horn, in the pericentral region all along the rostrocaudal axis and in the nucleus phrenicus (segments C4-C5), nucleus dorsalis (segments Th2-L2), nucleus Y (segments S1-S3), and the dorsal part of the dorsal gray commissure (S1-S3). A schematic diagram documenting the segmental and laminar distribution of NADPH diaphorase activity is given.  相似文献   

11.
In order to study central neuronal components involved in subcutaneous (s.c.) bee venom-induced persistent pain (a new tonic pain model), we use Fos immunostaining technique to study the spatial and temporal patterns of neuronal activity in the spinal cord of anesthetized rats. Following intraplantar bee venom injection, Fos-like immunoreactive (ir) neurons were only seen from L1 to S3 rostrocaudally with distinct distribution at L4-5 segments. At segments of L1-2 and S1-3, Fos-ir labelings were diffusely and symmetrically distributed on both sides of the gray matter; however, at L4-5 segments, Fos-ir neurons were densely localized in medial portion of laminae I-II, less densely in laminae V-VI and a few in laminae VII and X ipsilateral to the injection side. No Fos labeling was seen in ventral horn of the spinal cord at L4-5 segments. Fos protein began to express only within lamina I at 0.5 h, but increased over the whole dorsal horn at 1 h and reached peak labeling at 2 h after bee venom. Expression of c-Fos in laminae I-II decreased at 4 h, and completely disappeared at 24 h, however, labeling in laminae V-VI disappeared much slowly and existed even at 96 h after bee venom. Within laminae III-IV, Fos-ir neurons could not be seen at 0.5 h, but began to be seen at 1 h and appeared to exist even at 24 h after bee venom. Systemic morphine suppressed c-Fos expression dose-dependently in both superficial and deep layers of dorsal horn and the latter region was much more sensitive to morphine than the former one. The present results demonstrated that prolonged neuronal activities in superficial and deep layers of dorsal horn were essential to mediation of bee venom induced tonic pain and may have different roles in generation and/or modulation of spontaneous pain and hyperalgesia and allodynia.  相似文献   

12.
Chick ciliary ganglion neurons receive innervation from a single source, the accessory oculomotor nucleus (AON), and nicotinic ACh receptors (AChRs) mediate chemical synaptic transmission through the ganglion. Previous experiments examining the developmental expression of AChRs in embryonic chick ciliary ganglion neurons in situ have shown that AChR levels increase substantially in the neurons at the time of innervation. Prior to synapse formation, few AChRs are detected in the neurons. In the present experiments, the role of presynaptic inputs in inducing an increase in AChRs was established by examining AChR levels in ciliary ganglion neurons that have been deprived of innervation by surgical ablation of the AON prior to synapse formation. AChR levels were dramatically reduced in neurons of input-deprived ganglia as compared to control innervated neurons at all developmental stages examined from embryonic day (ED) 5 to ED 12 as determined by indirect immunocytochemical labeling of frozen ganglion sections with the anti-AChR monoclonal antibody mAb 35, and light microscopy. In contrast, neuronal somata of input-deprived and control ganglia had equivalent levels of immunolabeling for three other components, a transmembrane glycoprotein of synaptic vesicles, SV2, and two microtubule-associated proteins, MAP 1B and MAP 2, from ED 5 up to ED 10. The results demonstrate that presynaptic inputs specifically increase the levels of AChR expression in developing neurons. In addition, changes in the levels of immunolabeling for AChRs, SV2, MAP 1B, and MAP 2 in neuronal somata after ED 10 demonstrate that other major developmental events also influence the levels of these components in neurons. Declines in the intensity of AChR, SV2, MAP 1B, and MAP 2 immunolabeling within a subset of neuronal somata in both operated and control ganglia at ED 10 and 12 coincide with the period of neuronal cell death. Increases in AChR labeling in the rest of the neuronal population of input-deprived ganglia at ED 12 suggest that, in addition to innervation, synapse formation with the peripheral target tissue influences AChR levels in developing neurons in situ.  相似文献   

13.
Changes in the RNA-content of isolated anterior horn motor neurons from the 7th cervical segment were studied during the postnatal development of pre- and postnatally undernourished, and normally nourished rats. The motor neurons of the anterior horn were isolated by micromanipulation from Carnoy-fixed sections. The neuronal RNA-content was determined by microchemical methods according to Edstr?m (1964). The observation was made that moderate pre- and postnatal undernutrition does not alter the normal RNA-accumulation in anterior horn motor neurons during the preweaning period. After weaning the cellular RNA incorporation decreases but again reaches normal values at the age of 39 days. The present results are compared with those of a previous study (Haltia 1970) in which rats were severely undernourished postnatally.  相似文献   

14.
15.
The primary objectives of this study were to test whether 1) N-acetylaspartate (NAA), a neuronal marker, is reduced in motor cortex and corticospinal-tract (CST) brain regions of ALS patients; and 2) motor cortex NAA correlates to a clinical measurement of upper motor neuron function in ALS patients. Ten probable or definite ALS patients and nine neurologically normal control subjects were studied. Three axial planes of two-dimensional 1H MRSI data were collected, using a single spin-echo multislice sequence (TE140/TR2000). Two of the 1H MRSI planes were positioned superior to the lateral ventricles, and one plane was positioned at the level of the internal capsule. Spectroscopy voxels were selected from motor cortex, frontal cortex, parietal cortex, medial gray matter, centrum semiovale white matter, anterior internal capsule, and posterior internal capsule. Peak integrals were obtained for the three major 1H MRSI singlet resonances, NAA, creatine and phosphocreatine (Cr), and cholines (Cho). Maximum finger-tap rate was used as a clinical measurement of upper motor neuron function. In ALS, brain NAA/(Cho+Cr) was reduced 19% (p=0.024) in the motor cortex and 16% (p=0.021) in the CST (centrum semiovale and posterior internal capsule) regions. NAA/ (Cho+Cr) was not reduced in frontal cortex, parietal cortex, medial gray matter, or anterior internal capsule. There was a significant relation between ALS motor cortex NAA/(Cho+Cr) and maximum finger-tap rate (r=0.80; p=0.014). NAA/(Cho+Cr) was reduced in motor cortex and CST regions and unchanged in other brain regions of ALS patients when compared with controls. These findings are consistent with the known distribution of neuronal loss in ALS. The positive correlation between motor cortex NAA/(Cho+Cr) and maximum finger-tap rate suggests that reduced NAA/(Cho+Cr) is a surrogate marker of motor cortex neuron loss in ALS. These findings support the study of 1H MRSI NAA measurement as an objective and quantitative measurement of upper motor neuron dysfunction in ALS.  相似文献   

16.
Chronic alcohol intoxication is known to produce neuronal degeneration in the central and peripheral nervous system of experimental animals and of humans. It is suggested that various components of the cytoskeleton undergo profound changes following chronic alcohol use and misuse. Here we studied the expression of the neuronal cytoskeletal microtubule-associated protein 2 (MAP2) following long-term alcohol consumption and subsequent alcohol withdrawal. Alcohol-preferring AA (Alko Alkohol) rats with a high voluntary alcohol consumption for a period of 16 months were compared with age-matched control rats without prior experience with alcohol. For comparison, in a second experiment, heterogeneous Wistar rats that also had voluntary access to alcohol for 8 months were examined following alcohol consumption and withdrawal. In situ hybridization and subsequent dot blot and Northern blot analysis for further quantification revealed that chronically alcoholized animals exhibit markedly decreased MAP2 mRNA levels in several parts of the extrapyramidal system (mainly in the caudate putamen, the substantia nigra pars compacta and the globus pallidus), the mesolimbic system, in several hypothalamic nuclei and in the nucleus inferior colliculus. Other areas such as the hippocampus, frontoparietal cortex and cerebellum were less affected by chronic alcohol intake, however, in these regions the MAP2 mRNA levels were increased during alcohol withdrawal. These results suggest that long-term alcohol self-administration affects central neurons involved in motor control via the influence on the integrity of the cytoskeleton and may thus induce motor dysfunction.  相似文献   

17.
Previous studies have shown that the injection of nitric oxide (NO) donating compounds into the dorsal periaqueductal gray region of the midbrain (PAG) decreases mean arterial pressure (MAP), while the injection of NO synthase (NOS) inhibitors increases MAP. In this study we used both in-vivo and in-vitro preparations and examined the effect of a NO donor and a NOS inhibitor on MAP, membrane properties, and synaptic activities in PAG neurons. We found that: (1) Injection of the NO donor hydroxylamine (HA) into the dorsal PAG decreased MAP, while the injection of the neuronal NOS (nNOS) inhibitor, 1-(2-trifluoromethylphenyl) imidazole (TRIM) increased MAP. These responses were consistent and site-specific. (2) HA-evoked hypotensive responses were mediated by PAG neuronal activity, because they were blocked by pre-injection with gamma-amino-butyric acid (GABA). (3) HA consistently increased the rate of observable synaptic events while TRIM consistently decreased the rate of observable synaptic events. (4) Bicuculline (BIC) and naloxone (NAL) blocked HA-evoked increases in the rate of observable inhibitory synaptic events. (5) Perfusion with sodium nitroprusside (SNP) and illumination with bright light consistently elevated rates of observable synaptic events, and SNP-evoked increases of excitatory synaptic events were blocked by pretreatment with glutamic acid antagonists. (6) PAG-medullary projecting neurons exhibited similar response patterns. The results of this study suggest that: (1) NO production within the PAG is a major component of PAG-mediated cardiovascular responses. (2) The effects of NO may be mediated in part by increased presynaptic vesicular release of glutamic acid, GABA, and enkephalin.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by selective upper and lower motor neuron degeneration, the pathogenesis of which is unknown. About 60%-70% of sporadic ALS patients have a 30%-95% loss of the astroglial glutamate transporter EAAT2 (excitatory amino acid transporter 2) protein in motor cortex and spinal cord. Loss of EAAT2 leads to increased extracellular glutamate and excitotoxic neuronal degeneration. Multiple abnormal EAAT2 mRNAs, including intron-retention and exon-skipping, have now been identified from the affected areas of ALS patients. The aberrant mRNAs were highly abundant and were found only in neuropathologically affected areas of ALS patients but not in other brain regions. They were found in 65% of sporadic ALS patients but were not found in nonneurologic disease or other disease controls. They were also detectable in the cerebrospinal fluid (CSF) of living ALS patients, early in the disease. In vitro expression studies suggest that proteins translated from these aberrant mRNAs may undergo rapid degradation and/ or produce a dominant negative effect on normal EAAT2 resulting in loss of protein and activity. These findings suggest that the loss of EAAT2 in ALS is due to aberrant mRNA and that these aberrant mRNAs could result from RNA processing errors. Aberrant RNA processing could be important in the pathophysiology of neurodegenerative disease and in excitotoxicity. The presence of these mRNA species in ALS CSF may have diagnostic utility.  相似文献   

19.
We analyze neuronal cytopathology and secondary reactions in spinal-muscular atrophy (SMA) in comparison with amyotrophic lateral sclerosis (ALS). In a series of SMA and ALS cases, immunohistochemistry was performed on spinal cord sections for neuronal, astroglial and microglial antigens, ubiquitin and tau proteins. Swollen motoneurons staining for phosphorylated neurofilament proteins are seen in most SMA but few ALS cases. Ubiquitinated inclusions are found only in ALS. In SMA, glial bundles are prominent in anterior roots, to lesser extent in posterior roots. In ALS, glial bundles are seen only in some cases. While basic histopathologies are similar in both types of motor neurone diseases, neuronal cytoskeletal pathology is more prominent in SMA, possibly reflecting a more acute degenerative process. The presence of axon spheroids and glial bundles also in posterior horns/roots of both types of motor neurone disease suggests spread of degenerative pathology beyond the motor system.  相似文献   

20.
The pathogenesis of neuronal degeneration in both sporadic and familial amyotrophic lateral sclerosis (ALS) associated with mutations in superoxide dismutase may involve oxidative stress. A leading candidate as a mediator of oxidative stress is peroxynitrite, which is formed by the reaction of superoxide with nitric oxide. 3-Nitrotyrosine is a relatively specific marker for oxidative damage mediated by peroxynitrite. In the present study, biochemical measurements showed increased concentrations of 3-nitrotyrosine and 3-nitro-4-hydroxyphenylacetic acid in the lumbar and thoracic spinal cord of ALS patients. Increased 3-nitrotyrosine immunoreactivity was observed in motor neurons of both sporadic and familial ALS patients. Neurologic control patients with cerebral ischemia also showed increased 3-nitrotyrosine immunoreactivity. These findings suggest that peroxynitrite-mediated oxidative damage may play a role in the pathogenesis of both sporadic and familial ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号