首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A highly inbred line of Drosophila melanogaster was subdivided into replicate sublines that were subsequently maintained independently with 10 pairs of parents per generation. The parents were randomly sampled for 19 'unselected' sublines and artificially selected for high or low abdominal or sternopleural bristle number for 12 'selected' sublines (with 3 replicate selection lines/trait/direction of selection). Divergence in mean bristle number among the unselected sublines, and response of the selected sublines to selection, are attributable to the accumulation of new mutations affecting bristle number. The input of mutational variance per generation, VM, can be estimated from the magnitude of response or divergence, assuming neutrality of mutations affecting the bristle traits. We reared unselected lines at generations 222 and 224, and selected lines at generations 182-184 of mutation accumulation at each of three temperatures (18 degrees C, 25 degrees C, 28 degrees C), and estimated the mutational variance common to all environments and the mutational variance from genotype x environment interaction. For sternopleural bristle number, the mutational interaction variance was 26% of the mutational variance common to all temperatures, and the interaction variance was due to temperature x line interaction. For abdominal bristle number, the mutational interaction variance was 142% of the mutational variance common to all temperatures, and the interaction variance was due to interactions of temperature x line, sex x line, and temperature x sex x line. It is possible that segregating variation for bristle number is maintained partly by genotype x environment interaction, but information on the fitness profiles of mutations affecting bristle number in each environment will be necessary to evaluate this hypothesis quantitatively.  相似文献   

2.
A measure of the equilibrium load of deleterious mutations is developed that explicitly incorporates the level of genome-wide linkage disequilibrium. This measure, called the requisite mutational load, is based on the minimal net reproductive rate of the least mutated class necessary to prevent the deterministic mutation accumulation. If this minimal net reproductive rate is larger than ecological or physiological constraints allow, then: a) the population is driven to extinction via deterministic mutation accumulation, or b) a mutational Red-Queen ensues with adaptation counterbalancing mutation accumulation. Two population parameters determine the requisite mutational load: a) the equilibrium strength of selection, measured as a selection gradient, and b) the equilibrium opportunity for selection, measured as the variance in number of mutations per genome. The opportunity for selection is decomposed into the accumulation of mutations (average number per genome) and the level of genome-wide linkage disequilibrium. Recombination can substantially reduce the requisite mutational load, compared to clonal reproduction, when there is buffering and/or reinforcing epistasis and also when there is positive assortative mating for fitness. Recombination is advantageous because it reduces the negative (variance reducing) linkage disequilibrium induced by beneficial epistasis. The functional form of the expression for requisite mutational load illustrates why epistasis within pathways, i.e., among closely interacting genes, is a powerful alternative to genome-wide truncation selection, as a means of reducing mutational load.  相似文献   

3.
Recent work has called attention to large differences among traits in the amount of standardized genetic variance they possess. There are four general factors which could play a role in causing this variation: mutation, elimination of deleterious variation, selection of favorable alleles, and balancing selection. Three factors could directly influence the mutational variability of traits: canalization, the mutational target size, and the timing of trait expression. Here I carry out simple tests of the importance of some of these factors using data from Drosophila melanogaster. I compiled information from the literature on the mutational and standing genetic variances in outbred populations, inferred the relative mutational target size of each trait, its a timing of expression, and used models of life history to calculate fitness sensitivities for each trait. Mutational variation seems to play an important role, as it is highly correlated with standing variance. The target size hypothesis was supported by a significant correlation between mutational variance and inferred target size. There was also a significant relationship between the timing of trait expression and mutational variance. These hypotheses are confounded by a correlation between timing and target size. The elimination and canalization hypotheses were not supported by these data, suggesting that they play a quantitatively less important role in determining overall variances. Additional information concerning the pleiotropic consequences of mutations would help to validate the fitness sensitivities used to test the elimination and canalization hypotheses.  相似文献   

4.
The empirical distributions of the average viability and fitness of mutation accumulation lines of Drosophila melanogaster were analyzed using minimum distance estimation. Data come from two different experimental designs where mutations were allowed to accumulate: 1) in copies of chromosome II protected from natural selection and recombination (viability: Mukai et al., 1972; Ohnishi, 1977; fitness: Houle et al., 1992), 2) in inbred lines derived from the same isogenic stock (viability: Fernández & López-Fanjul, 1996; fitness: this paper). Information from all data sets converged, indicating that the mutational rates were small, about 1% for viability and 3% for fitness. For both traits, the rate of mutational decline appears to be smaller than suggested by previous studies (about one-fifth of the latter), the average mutational effect was neither severe nor very slight, ranging from -0.1 to -0.3, and the distribution of mutant effects was, at most, slightly leptokurtic. Therefore, the mutational load in natural populations is one to two orders of magnitude smaller than previously thought (as based upon analyses conditional to estimates of the mutational decline of viability or fitness that appear to be biased upward). Over 95% of the mutational variance of each trait was contributed by non-slightly deleterious mutations (absolute homozygous effect larger than 0.03 or 0.1, depending on the data set considered) occurring at a rate not higher than 0.025 per haploid genome and generation. Our data suggest that most deleterious mutations affecting fitness act mainly through a single component-trait.  相似文献   

5.
The general theory of the effective size (Ne) for populations under directional selection is extended to cover linkage. Ne is a function of the association between neutral and selected genes generated by finite sampling. This association is reduced by three factors: the recombination rate, the reduction of genetic variance due to drift, and the reduction of genetic variance of the selected genes due to selection. If the genetic size of the genome (L in Morgans) is not extremely small the equation for Ne is [formula, see text] where N is the number of reproductive individuals, C 2 is the genetic variance for fitness scaled by the squared mean fitness, (1 - Z) = Vm/C2 is the rate of reduction of genetic variation per generation and Vm is the mutational input of genetic variation for fitness. The above predictive equation of Ne is valid for the infinitesimal model and for a model of detrimental mutations. The principles of the theory are also applicable to favorable mutation models if there is a continuous flux of advantageous mutations. The predictions are tested by simulation, and the connection with previous results is found and discussed. The reduction of effective size associated with a neutral mutation is progressive over generations until the asymptotic value (the above expression) is reached after a number of generations. The magnitude of the drift process is, therefore, smaller for recent neutral mutations than for old ones. This produces equilibrium values of average heterozygosity and proportion of segregating sites that cannot be formally predicted from the asymptotic Ne, but both parameters can still be predicted by following the drift along the lineage of genes. The spectrum of gene frequencies in a given generation can also be predicted by considering the overlapping of distributions corresponding to mutations that arose in different generations and with different associated effective sizes.  相似文献   

6.
The phenomenon that the genetic variance of fitness components increase following a bottleneck or inbreeding is supported by a growing number of experiments and is explained theoretically by either dominance or epistasis. In this article, diffusion approximations under the infinite sites model are used to quantify the effect of dominance, using data on viability in Drosophila melanogaster. The model is based on mutation parameters from mutation accumulation experiments involving balancer chromosomes (set I) or inbred lines (set II). In essence, set I assumes many mutations of small effect, whereas set II assumes fewer mutations of large effect. Compared to empirical estimates from large outbred populations, set I predicts reasonable genetic variances but too low mean viability. In contrast, set II predicts a reasonable mean viability but a low genetic variance. Both sets of parameters predict the changes in mean viability (depression), additive variance, between-line variance and heritability following bottlenecks generally compatible with empirical results, and these changes are mainly caused by lethals and deleterious mutants of large effect. This article suggests that dominance is the main cause for increased genetic variances for fitness components and fitness-related traits after bottlenecks observed in various experiments.  相似文献   

7.
Polygenic mutations were induced by treating Drosophila melanogaster adult males with 2.5 mM EMS. The treated second chromosomes, along with untreated controls, were then made homozygous, and five life history, two behavioral, and two morphological traits were measured. EMS mutagenesis led to reduced performance for life history traits. Changes in means and increments in genetic variance were relatively much higher for life history than for morphological traits, implying large differences in mutational target size. Maximum likelihood was used to estimate mutation rates and parameters of distributions of mutation effects, but parameters were strongly confounded with one another. Several traits showed evidence of leptokurtic distributions of effects and mean effects smaller than a few percent of trait means. Distributions of effects for all traits were strongly asymmetrical, and most mutations were deleterious. Correlations between life history mutation effects were positive. Mutation parameters for one generation of spontaneous mutation were predicted by scaling parameter estimates from the EMS experiment, extrapolated to the whole genome. Predicted mutational coefficients of variation were in good agreement with published estimates. Predicted changes in means were up to 0.14% or 0.6% for life history traits, depending on the model of scaling assumed.  相似文献   

8.
A theoretical analysis was carried out on the mutation load observed in long-maintained inbred lines from two experiments with Drosophila and mice. The rate of decline in fitness and its sampling distribution were predicted for both experiments using Monte Carlo simulation with a range of mutational parameters and models. The predicted rates of change in fitness were compared to the empirical observed rates, which were close to zero. The classical hypothesis of many deleterious mutations (about one event per genome per generation) of small effect (1-2%) resulting in a mutation pressure for fitness of about 1% per generation is incompatible with the data. Recent estimates suggesting an overall mutation pressure for fitness traits of about 0.1% are, however, compatible with the observed load.  相似文献   

9.
Muller proposed that an asexual organism will inevitably accumulate deleterious mutations, resulting in an increase of the mutational load and an inexorable, ratchet-like, loss of the least mutated class [Muller, H.J. (1964) Mutat. Res. 1, 2-9]. The operation of Muller's ratchet on real populations has been experimentally demonstrated only in RNA viruses. However, these cases are exceptional in that the mutation rates of the RNA viruses are extremely high. We have examined whether Muller's ratchet operates in Salmonella typhimurium, a DNA-based organism with a more typical genomic mutation rate. Cells were grown asexually under conditions expected to result in high genetic drift, and the increase in mutational load was determined. S. typhimurium accumulated mutations under these conditions such that after 1700 generations, 1% of the 444 lineages tested had suffered an obvious loss of fitness, as determined by decreased growth rate. These results suggest that in the absence of sex and with high genetic drift, genetic mechanisms, such as back or compensatory mutations, cannot compensate for the accumulation of deleterious mutations. In addition, we measured the appearance of auxotrophs, which allowed us to calculate an average spontaneous mutation rate of approximately 0.3-1.5 x 10(-9) mutations per base pair per generation. This rate is measured for the largest genetic target studied so far, a collection of about 200 genes.  相似文献   

10.
It is well established on theoretical grounds that the accumulation of mildly deleterious mutations in nonrecombining genomes is a major extinction risk in obligately asexual populations. Sexual populations can also incur mutational deterioration in genomic regions that experience little or no recombination, i.e., autosomal regions near centromeres, Y chromosomes, and organelle genomes. Our results suggest, for a wide array of genes (transfer RNAs, ribosomal RNAs, and proteins) in a diverse collection of species (animals, plants, and fungi), an almost universal increase in the fixation probabilities of mildly deleterious mutations arising in mitochondrial and chloroplast genomes relative to those arising in the recombining nuclear genome. This enhanced width of the selective sieve in organelle genomes does not appear to be a consequence of relaxed selection, but can be explained by the decline in the efficiency of selection that results from the reduction of effective population size induced by uniparental inheritance. Because of the very low mutation rates of organelle genomes (on the order of 10(-4) per genome per year), the reduction in fitness resulting from mutation accumulation in such genomes is a very long-term process, not likely to imperil many species on time scales of less than a million years, but perhaps playing some role in phylogenetic lineage sorting on time scales of 10 to 100 million years.  相似文献   

11.
Under the mutation accumulation model of senescence, it was predicted that the additive genetic variance (VA) for fitness traits will increase with age. We measured age-specific mortality and fecundity from 65,134 Drosophila melanogaster and estimated genetic variance components, based on reciprocal crosses of extracted second chromosome lines. Elsewhere we report the results for mortality. Here, for fecundity, we report a bimodal pattern for VA with peaks at 3 days and at 17-31 days. Under the antagonistic pleiotropy model of senescence, it was predicted that negative correlations will exist between early and late life history traits. For fecundity itself we find positive genetic correlations among age classes > 3 days but negative nonsignificant correlations between fecundity at 3 days and at older age classes. For fecundity vs. age-specific mortality, we find positive fitness correlations (negative genetic correlations) among the traits at all ages > 3 days but a negative fitness correlation between fecundity at 3 days and mortality at the oldest ages (positive genetic correlations). For age-specific mortality itself we find overwhelmingly positive genetic correlations among all age classes. The data suggest that mutation accumulation may be a major source of standing genetic variance for senescence.  相似文献   

12.
In sexual populations, beneficial mutations that occur in different lineages may be recombined into a single lineage. In asexual populations, however, clones that carry such alternative beneficial mutations compete with one another and, thereby, interfere with the expected progression of a given mutation to fixation. From theoretical exploration of such 'clonal interference', we have derived (1) a fixation probability for beneficial mutations, (2) an expected substitution rate, (3) an expected coefficient of selection for realized substitutions, (4) an expected rate of fitness increase, (5) the probability that a beneficial mutation transiently achieves polymorphic frequency (> or = 1%), and (6) the probability that a beneficial mutation transiently achieves majority status. Based on (2) and (3), we were able to estimate the beneficial mutation rate and the distribution of mutational effects from changes in mean fitness in an evolving E. coli population.  相似文献   

13.
Identifying the forces responsible for the origin and maintenance of sexuality remains one of the greatest unsolved problems in biology. The mutational deterministic hypothesis postulates that sex is an adaptation that allows deleterious mutations to be purged from the genome; it requires synergistic interactions, which means that two mutations would be more harmful together than expected from their separate effects. We generated 225 genotypes of Escherichia coli carrying one, two or three successive mutations and measured their fitness relative to an unmutated competitor. The relationship between mutation number and average fitness is nearly log-linear. We also constructed 27 recombinant genotypes having pairs of mutations whose separate and combined effects on fitness were determined. Several pairs exhibit significant interactions for fitness, but they are antagonistic as often as they are synergistic. These results do not support the mutational deterministic hypothesis for the evolution of sex.  相似文献   

14.
In a five-generation selection experiment, separate lines of standard mink (Mustela vison) were subjected to selection for litter size at 3 wk (F line), body weight in September (BS line), underfur density (P line), or combined selection for litter size and body weight (I line). One unselected line served as a control (C line). The present paper focuses on correlated responses to selection regarding fertility and fitness traits, fur quality, and body size traits. Genetic and environmental parameters were estimated with REML (Restricted Maximum Likelihood) techniques using a multi-trait, reduced animal model in a derivative-free way. Genetic and phenotypic correlations were estimated from four subsets of data consisting of 1) female September weight, litter size, and kit mortality; 2) body size traits; 3) September weight and fur traits graded on live mink; and 4) fur traits graded on live mink and skins. September weight was found to be negatively correlated with fertility and fitness traits as well as with fur traits. Selection for underfur density resulted in an improvement in guard hair quality and in general impression of the fur and almost eliminated the fur defect metallic sheen.  相似文献   

15.
Very little is known about the distribution of mutational effects on organismal fitness, despite the fundamental importance of this information for the study of evolution. This lack of information reflects the fact that it is generally difficult to quantify the dynamic effects of mutation and natural selection using only static distributions of allele frequencies. In this study, we took a direct approach to measuring the effects of mutations on fitness. We used transposon-mutagenesis to create 226 mutant clones of Escherichia coli. Each mutant clone carried a single random insertion of a derivative of Tn10. All 226 mutants were independently derived from the same progenitor clone, which was obtained from a population that had evolved in a constant laboratory environment for 10,000 generations. We then performed competition experiments to measure the effect of each mutation on fitness relative to a common competitor. At least 80% of the mutations had a significant negative effect on fitness, whereas none of the mutations had a significant positive effect. The mutations reduced fitness by about 3%, on average, but the distribution of fitness effects was highly skewed and had a long, flat tail. A compound distribution, which includes both gamma and uniform components, provided an excellent fit to the observed fitness values.  相似文献   

16.
Quantitative genetic analyses for body size and for life history characters within and among populations of Daphnia obtusa reveal substantial genetic variance at both hierarchical levels for all traits measured. Simultaneous allozymic analysis on the same population samples indicate a moderate degree of differentiation: GST = 0.28. No associations between electrophoretic genotype and phenotypic characters were found, providing support for the null hypothesis that the allozymic variants are effectively neutral. Therefore, GST can be used as the null hypothesis that neutral phenotypic evolution within populations led to the observed differentiation for the quantitative traits, which I call QST. The results of this study provide evidence that natural selection has promoted diversification for body size among populations, and has impeded diversification for relative fitness. Analyses of population differentiation for clutch size, age at reproduction, and growth rate indicate that neutral phenotypic evolution cannot be excluded as the cause.  相似文献   

17.
Given favorable environmental and demographic conditions, premeiotic clusters of identical mutations can produce a broad distribution of the initial frequency of underdominant alleles. Because of these clusters, new underdominant mutations may not necessarily be as rare in a population as previously assumed. The fixation of underdominant mutations, especially those with low heterozygous fitness, is increased when mutations appear in a cluster due to a genetic change that occurred before germline differentiation. Most restrictions on the fixation of underdominant mutations in a single population, such as strong genetic drift, weak selection against mutant heterozygotes, isolated population structure, inbreeding, meiotic drive, and selection in favor of mutant homozygotes can be relaxed or even dropped. Instead, the fate of strong underdominant mutations is determined mainly by ecological and genetic factors that affect the cluster size distribution of new premeiotic mutations. Accumulation of reproductive isolation by the fixation of underdominant mutations becomes more feasible with clusters, and mutation is not always the weakest force during this evolutionary process. The large mean and variance of reproductive success in many multicellular species make it possible that even underdominant mutations with very low heterozygous fitness could contribute substantially to reproductive isolation.  相似文献   

18.
Two major theories of the evolution of senescence (mutation accumulation and antagonistic pleiotropy) make different predictions about the relationships between age, inbreeding effects, and the magnitude of genetic variance components of life-history components. We show that, under mutation accumulation, inbreeding decline and three major components of genetic variance are expected to increase with age in randomly mating populations. Under the simplest version of the antagonistic pleiotropy model, no changes in the severity of inbreeding decline, dominance variance, or the genetic variance of chromosomal homozygotes are expected, but additive genetic variance may increase with age. Age-specific survival rates and mating success were measured on virgin males, using lines extracted from a population of Drosophila melanogaster. For both traits, inbreeding decline and several components of genetic variance increase with age. The results are consistent with the mutation accumulation model, but can only be explained by antagonistic pleiotropy if there is a general tendency for an increase with age in the size of allelic effects on these life-history traits.  相似文献   

19.
There is substantial new variation for quantitative traits generated by mutation that can be utilised by artificial selection. With long-term selection, however, response is often attenuated and a selection limit sometimes reached, even though genetic variation is frequently still present in these lines. In this paper, the theoretical bases of long-term response and variability of populations that come from mutational variance are reviewed, and the relation between them is related to the strength and mode of the natural selection, whether due to pleiotropic effects of mutant genes or stabilising selection. Simple formulae to predict the consequence of relaxed or reversed selection are derived. Results from long-term selection experiments in mice in this laboratory are described and related to the theoretical analyses with the aim of reconciling the evidence for substantial standing variation with the low rate of response.  相似文献   

20.
The evolutionary theory of aging predicts that the equilibrium gene frequency for deleterious mutations should increase with age at onset of mutation action because of weaker (postponed) selection against later-acting mutations. According to this mutation accumulation hypothesis, one would expect the genetic variability for survival (additive genetic variance) to increase with age. The ratio of additive genetic variance to the observed phenotypic variance (the heritability of longevity) can be estimated most reliably as the doubled slope of the regression line for offspring life span on paternal age at death. Thus, if longevity is indeed determined by late-acting deleterious mutations, one would expect this slope to become steeper at higher paternal ages. To test this prediction of evolutionary theory of aging, we computerized and analyzed the most reliable and accurate genealogical data on longevity in European royal and noble families. Offspring longevity for each sex (8409 records for males and 3741 records for females) was considered as a dependent variable in the multiple regression model and as a function of three independent predictors: paternal age at death (for estimation of heritability of life span), paternal age at reproduction (control for parental age effects), and cohort life expectancy (control for cohort and secular trends and fluctuations). We found that the regression slope for offspring longevity as a function of paternal longevity increases with paternal longevity, as predicted by the evolutionary theory of aging and by the mutation accumulation hypothesis in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号