首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brown SK 《Indoor air》2002,12(1):55-63
Volatile organic compounds (VOCs) within new and established buildings have been determined and factors significant to their presence have been identified. In established dwellings, total volatile organic compound (TVOC) concentrations were low, but were approximately four times higher than in outdoor air, showing a dominant effect of indoor sources. The presence of attached garages, site contamination and 'faulty' wool carpet were associated with higher indoor pollution. In three dwellings, unidentified sources of benzene were indicated. Much higher VOC concentrations were observed in new or renovated buildings, persisting above "baseline" levels for several weeks, concentration decay rate correlating with VOC molecular volume, indicating emissions were limited by material diffusion processes. VOC and formaldehyde emission decays in a new dwelling occurred by a double-exponential source model. This shows that persistent low levels of volatile organic pollutants in established dwellings can occur due to long-term emissions from building materials.  相似文献   

2.
There are limited data on exposures to ambient air toxics experienced by inhabitants of urban areas in developing countries that have high levels of outdoor air pollution. In particular, little is known about exposures experienced by individuals working outdoors - typically as part of the informal sector of the economy - as compared to workers in office-type environments that approach the indoor air quality conditions of the more developed countries. The objective of this study is to explore these differences in personal exposures using a convenience sample of 68 outdoor and indoor workers living in Mexico City (higher outdoor air pollution) and Puebla (lower outdoor air pollution), Mexico. Occupational and non-occupational exposures to airborne volatile organic compounds (VOCs) were monitored during a 2 day period, monitoring 2 consecutives occupational and non-occupational periods, using organic vapor monitors (OVMs). Socio-demographic and personal time-location-activity information were collected by means of questionnaires and activity logs. Outdoor workers experienced significantly higher exposures to most VOCs compared to indoor workers in each of these cities. The outdoor workers in Mexico City had the highest exposures both during- and off-work, with maximum occupational exposures for toluene, MTBE, n-pentane, and d-limonene exceeding 1 mg/m(3). The inter-city pattern of exposures between the outdoor workers is consistent with the higher outdoor air pollution levels in Mexico City, and is above exposures reported for urban areas of the more developed countries. Results from this study suggest that elevated outdoor air pollution concentrations have a larger impact on outdoor workers' personal exposures compared to the contribution from indoor pollution sources. This contrasts with the more dominant role of indoor air VOC contributions to personal exposures typically reported for urban populations of the more developed countries.  相似文献   

3.
Retail buildings have a potential for both short‐term (customer) and long‐term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in‐store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid‐sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor‐to‐outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.  相似文献   

4.
Building materials and human activities are important sources of contamination indoors, but little information is available regarding contamination during construction process which could persist during the whole life of buildings. In this study, six construction stages on two construction sites were investigated regarding the emissions of 43 volatile organic compounds (VOCs), 46 semi-volatile organic compounds (SVOCs), and the presence of 4 genera of mold. Results show that the future indoor air quality does not only depend on the emissions of each building product but that it is also closely related to the whole implementation process. Mold spore measurements can reach 1400 CFU/m3, which is particularly high compared with the concentrations usually measured in indoor environments. Relatively low concentrations of VOCs were observed, in relation to the use of low emissive materials. Among SVOCs analyzed, some phthalates, permethrin, and hydrocarbons were found in significant concentrations upon the delivery of building as well as triclosan, suspected to be endocrine disruptor, and yet prohibited in the treatment of materials and construction since 2014. As some regulations exist for VOC emissions, it is necessary to implement them for SVOCs due to their toxicity.  相似文献   

5.
Although significant progress has been made in understanding the sources and chemistry of indoor volatile organic compounds (VOCs) during the past decades, much is unknown about the role of humans in indoor air chemistry. In the spring of 2014, we conducted continuous measurements of VOCs using a proton transfer reaction mass spectrometer (PTR‐MS) in a university classroom. Positive matrix factorization (PMF) of the measured VOCs revealed a ‘human influence’ component, which likely represented VOCs produced from human breath and ozonolysis of human skin lipids. The concentration of the human influence component increased with the number of occupants and decreased with ventilation rate in a similar way to CO2, with an average contribution of 40% to the measured daytime VOC concentration. In addition, the human skin lipid ozonolysis products were observed to correlate with CO2 and anticorrelate with O3, suggesting that reactions on human surfaces may be important sources of indoor VOCs and sinks for indoor O3. Our study suggests that humans can substantially affect VOC composition and oxidative capacity in indoor environments.  相似文献   

6.
论述了室内空气质量的重要性以及室内挥发性有机物(VOC)对健康的危害,介绍了评价VOC污染的量化指标TVOC和减少室内VOC污染的技术和措施。  相似文献   

7.
It is suspected that persons who work in indoor environments near busy roadways are exposed to elevated levels of air pollutants during working hours. This study evaluated the potential exposure and source contribution associated with traffic-related air pollution for workers (polishers and repairmen) in shoe stalls from each of 32 districts during working hours in Seoul, Korea. The shoe stalls have been located at very close distances to the busy roadways. In this study, shoe stall workers could be exposed to high levels of respirable suspended particulate (RSP), nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) from outdoor sources such as traffic exhaust, as well as indoor sources in the shoe stalls such as dust on the shoes, portable gas ranges, organic solvents, adhesives and shoe polish. Compounds of particular note included indoor mean concentrations of benzene, toluene, m/p-xylene and o-xylene were 0.732, 6.777, 4.080 and 1.302 mg/m(3), respectively, in all shoe stalls. Mean indoor/outdoor ratios for toluene and m/p-xylene concentrations were 54.52 and 20.84, respectively. The contribution of vehicle exhaust emissions to indoor air quality of shoe stalls was identified by means of correlating the relationships between simultaneously measured air pollutant concentrations indoors and outdoors. Unlike RSP and NO(2), indoor VOCs concentrations of shoe stalls mainly originated from indoor sources vs. outdoor sources.  相似文献   

8.
The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices’ characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings’ structural characteristic or occupants’ activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.  相似文献   

9.
Seasonal cycle of VOCs in apartments   总被引:1,自引:0,他引:1  
To assess the adverse health effects of volatile organic compounds (VOCs), epidemiological studies combine the health outcome of individuals with their concomitant VOC exposure. While the latter is representative of the studied period, health effects might also be the result of long-term exposure or emerge in consequence of a peak pollution throughout the year. To address these problems, additional information about the spatiotemporal distribution of VOCs is necessary. The present paper aims at elucidating the spatial and temporal variation of VOC concentrations in Leipzig, Germany. The analysis is based on 1499 indoor and 222 outdoor measurements taken in the period between 1994 and 2001. All data were collected in the frame of epidemiological studies (Diez et al., 1999; Fritz et al., 1998; Schulz et al., 1999). The analysis comprised concentrations of 30 VOCs belonging to the groups of alkanes, cycloalkanes, aromatics, volatile halogenated hydrocarbons, and terpenes. We found that the VOC load in indoor air is, on average, 10 times higher than outdoors. For the studied period there was a clear downward tendency for all VOCs in apartments in Leipzig, except for terpenes which show an upward trend in the period 1996-99. In indoor air we observe an annual cycle for the total VOC concentration as well as the sum concentrations of the above called groups. Highest concentrations occur during the winter months, approximately three times higher than the summer burden. We summarize this finding in a seasonal model, which is fitted to our measurements. Based on the model we develop a procedure for seasonal adjustment, which enables to roughly estimate the annual peak concentration utilizing one monthly observation.  相似文献   

10.
A study was performed to characterize the concentration of dozens of volatile organic compounds (VOCs) at 10 locations within a single large building and track these concentrations over a 2-year period. The study was performed at a shopping center (strip mall) in New Jersey. A total of 130 indoor air samples were collected from 10 retail stores within the shopping center and analyzed for 60 VOCs by US EPA Method TO-15. Indoor concentrations of up to 55,100 microg/m(3) were measured for individual VOCs. The indoor/outdoor ratio (I/O) was as high as 1500 for acetone and exceeded 100 at times for various compounds, indicating that significant indoor air sources were present. A large degree of spatial variability was observed between stores within the building, with concentrations varying by three to four orders of magnitude for some compounds. The spatial variability was dependent on the proximity of the sampling locations to the indoor sources. A large degree of temporal variability also was observed for compounds emitted from indoor sources, but the temporal variability generally did not exceed two standard deviations (sigma). For compounds not emitted from indoor sources at significant rates, both the spatial and temporal variability tended to range within an order of magnitude at each location. PRACTICAL IMPLICATIONS: Many cross-sectional studies have been published where the levels of volatile organic compounds (VOCs) were measured in indoor air at one or two locations for houses or offices. This study provides longitudinal data for a commercial retail building and also addresses spatial variability within the building. The data suggest that spatial and temporal variability are important considerations for compounds emitted from indoor sources. Elevated concentrations were found in retail spaces with no apparent emission sources due to their proximity to other retail spaces with emission sources.  相似文献   

11.
The purpose of this study was to investigate the concentrations of volatile organic compounds (VOCs) in different indoor microenvironments of residential homes and hostels in an academic institute, in New Delhi, during March–May 2011. Eleven VOCs (aromatic and halogenated) were assessed. Sampling and analytical procedure were based on National Institute for Occupational Safety and Health (NIOSH) standard method. The lifetime cancer and non‐cancer risk were calculated for targeted VOCs using US Environmental Protection Agency guidelines. The mean concentrations of ∑ VOCs (sum of monitored VOCs) and individual VOC were found to be higher indoors as compared to outdoors at both types of premises. Indoor to outdoor (I/O) ratios of the targeted VOCs exceeded 1.0, suggesting the significant presence of indoor sources. Strong correlations between I/O concentrations of VOCs in the current study suggest the presence of common sources. Factor analysis (FA) was used for source evaluation separately at two premise types. The estimated lifetime cancer risks in the current study for all occupants at both premises exceeded 10?6.  相似文献   

12.
13.
A review is presented of investigations of volatile organic compound (VOC) concentrations in indoor air of buildings of different classifications (dwellings, offices, schools, hospitals) and categories (established, new and complaint buildings). Measured concentrations obtained from the published literature and from research in progress overseas were pooled so that VOC concentration profiles could be derived for each building classification/category. Mean concentrations of individual compounds in established buildings were found to be generally below 50 μg/m3, with most below 5 μg/m3. Concentrations in new buildings were much greater, often by an order of magnitude or more, and appeared to arise from construction materials and building contents. The nature of these sources and approaches to reduce indoor air concentrations by limiting source VOC emissions is discussed. Total VOC (TVOC) concentrations were substantially higher than concentrations of any individual VOCs in all situations, reflecting the large number of compounds present, but interpretation of such measurements was limited by the lack of a common definition for TVOC relevant to occupant exposure.  相似文献   

14.
Air samples, representing indoor environments of a kitchen in which a kerosene stove was used were collected and analysed for volatile organic compounds (VOCs) viz., n-hexane, benzene, heptane, toluene, p- and o-xylene and n-decane using a cryogenic preconcentration system and a gas chromatograph with a flame-ionisation detector. Simultaneous outdoor samples were also collected to determine indoor to outdoor (I/O) ratios for each compound. Reversed phase high performance liquid chromatography (HPLC) with ultra violet absorption detection was optimised for separation and quantification of polycyclic aromatic hydrocarbons (PAHs) in air particulate matter. Concentration of total suspended particulate matter (TSPM), benzene soluble organics and the PAHs in air samples collected in indoor environment of some tenements at Trombay, Mumbai where kerosene is used as cooking fuel are discussed in relation to the concentration of the same in outdoor environment in vicinity of the tenement. VOCs and PAHs results from samples collected in kitchens in Trombay are discussed in relation to indoor air pollution.  相似文献   

15.
This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n‐butane, 2‐methylbutane, toluene, formaldehyde, acetaldehyde, d‐limonene, ethanol, 2‐propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum‐like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings.  相似文献   

16.
Indoor air quality (IAQ) has been a matter of public concern these days whereas air pollution is normally monitored outdoors as part of obligations under the National air quality strategies. Much little is known about levels of air pollution indoors. Simultaneous measurements of indoor and outdoor carbon monoxide (CO) and oxides of nitrogen (NO and NO2) concentrations were conducted at three different environments, i.e. rural, urban and roadside in Agra, India, using YES - 205 multigas monitor during the winter season, i.e. October 2002-February 2003. A statistical correlation analysis of indoor concentration levels with outdoor concentrations was carried out. CO was maximum at roadside locations with indoor concentrations 2072.5 +/- 372 p.p.b. and outdoor concentrations 1220 +/- 281 p.p.b. (R2 = 0.005). Oxides of nitrogen were found maximum at urban site; NO concentration was 385 +/- 211 and 637 +/- 269 p.p.b. for indoors and outdoors respectively (R2 = 0.90792), where as NO2 concentration was 255 +/- 146 p.p.b. for indoors and 460 +/- 225 p.p.b. for outdoors (R2 = 0939464). Although indoor concentration at all the houses of the three sites have a positive correlation with outdoor concentration, CO variation indoors was very less due to outdoor sources. An activity schedule of inside and outside these homes were also prepared to see its influence and concentrations of pollutants. As standards for indoor air were not available for the Indian conditions these were compared with the known standards of other countries, where as outdoor concentrations were compared with the standards given by the Central Pollution Control board, which shows that indoor concentrations of both NO(x) and CO lie below permissible limits but outdoor concentrations of NO(x) cross the standard limits. PRACTICAL IMPLICATIONS: 'India currently bears the largest number of indoor air pollution (IAP) related health problems in world. An estimated 500,000 women & children die in India each year due to IAP-related cause--this is 25% of estimated IAP-related deaths worldwide. This study will be useful for policy makers, health related officials, academicians and Scientists who have interest in countries of developing world'.  相似文献   

17.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

18.
Indoor volatile organic compound (VOC) data obtained in 100 Hong Kong homes were analyzed to investigate the nature of emission sources and their contributions to indoor concentrations. A principal component analysis (PCA) showed that off-gassing of building materials, household products, painted wood products, room freshener, mothballs and consumer products were the major sources of VOCs in Hong Kong homes. The source apportionments were then evaluated by using an absolute principal component scores (APCS) technique combined with multiple linear regressions. The results indicated that 76.5 ± 1% (average ± standard error) of the total VOC emissions in Hong Kong homes attributes to the off-gassing of building materials, followed by the room freshener (8 ± 4%), household products (6 ± 2%), mothballs (5 ± 3%) and painted wood products (4 ± 2%). Analysis on the source strength in the monitored homes revealed that although six indoor sources were identified and quantified in the Hong Kong homes, only some homes were responsible for the elevated concentrations of target VOCs emitted from these sources. The findings provide us the mechanism of reducing levels of indoor VOCs and ultimately lead to cost effective reduction in population exposures.  相似文献   

19.
Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa,Mexico   总被引:6,自引:0,他引:6  
Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号