首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of different Ca-addition rates on calcium fluoride (CaF2) precipitation and deposition were investigated in 12 mmol/L sodium fluoride solutions to which 0.1 mol/L calcium chloride solution was continuously added at average rates of (5, 7.5, 10, 12.5, 15 or 20) mmol L−1 min−1. The changes in ionic fluoride and calcium concentrations, as well as turbidity, were continuously recorded by F and Ca electrodes, and a fiber optic based spectrophotometer, respectively. The F concentration decreased and turbidity increased with time indicating precipitation of CaF2. For the systems with Ca-addition rates of (5, 7.5, 10, 12.5, 15, and 20) mmol L−1 min−1, the 1 min CaF2 depositions in the model substrate (cellulose filter paper, pores 0.2 µm) expressed as mean ± SD of deposited F per substrate surface area were (3.78 ± 0.31, 11.45 ± 0.89, 9.31 ± 0.68, 8.20 ± 0.56, 6.63 ± 0.43, and 2.09 ± 0.28) µg/cm2, respectively (n = 10 for each group). The 1-min F depositions did not show positive correlation to Ca-addition rates. The lowest 1-min F deposition was obtained in the systems with the highest Ca-addition rate of 20 mmol L−1 min−1 for which CaF2 precipitation rate reached the maximum value of 0.31 mmol L−1 s−1 almost immediately after beginning of reaction (6 s). The largest 1-min F depositions were obtained from the systems with Ca addition rates of (7.5 to 12.5) mmol L−1 min−1 in which CaF2 precipitation rates continuously increased reaching the maximum values of (0.13 to 0.20) mmol L−1 s−1 after (18 to 29) s, respectively. The 1-min F depositions were greatly enhanced in comparison with the control F solutions that did not have continuous Ca-addition. This indicates that continuous Ca addition that controls the rate of CaF2 formation could be a critical factor for larger F depositions from F solutions. The efficacy of conventional F mouthrinses could be improved with addition of a substance that continuously releases Ca.  相似文献   

2.
The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 μm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.  相似文献   

3.
Primary pressure standards in the atmospheric pressure range are often established using mercury manometers. Less frequently, controlled-clearance dead-weight testers in which one component (normally the piston) has been dimensionally measured have also been used. Recent advances in technology on two fronts i) the fabrication of large-diameter pistons and cylinders with good geometry; and ii) the ability to measure the dimensions of these components, have allowed some dead-weight testers at NIST to approach total relative uncertainties (k = 2) in dimensionally-derived effective areas near 5 × 10−6. This paper describes a single piston/cylinder assembly (NIST-PG201WC/WC) that serves as both a primary gage in which both piston and cylinder are measured dimensionally and a controlled-clearance primary gage (employing the Heydemann-Welch method). Thus it allows some previous assumptions about the modeling of dead-weight testers to be checked. For the gage described in this paper the piston/cylinder clearance obtained from the two analyses have relative differences of 4 × 10−6 to 7 × 10−6 over the pressure range 35 kPa to 175 kPa. Some implications of these results will be discussed. From the dimensional characterizations and auxiliary measurements we have determined that the effective area for this gauge at 20 °C is: Aeff,20 = 1961.0659mm2(1 + 3.75 × 10?12P/Pa + 3.05 × 10?12PJ/Pa), where P is the system pressure and PJ is a control pressure. The estimated relative uncertainty in effective area is 8.2 × 10−6 +1.4 × 10−11 P/Pa (k = 2). The temperature coefficient for the area was measured and found to be (9.06 ± 0.04) × 10−6/K. Thus using the gage at a reference temperature of 23 °C yields an effective area: Aeff,23 = 1961.1192mm2(1 + 3.75 × 10?12P/Pa + 3.05 × 10?12PJ/Pa), with almost no increase in the uncertainty over that at 20 °C.  相似文献   

4.
The specific volumes of unvulcanized natural rubber and of a peroxide-cured vulcanizate of natural rubber were measured at pressures of 1–500 kg/cm2 at temperatures from 0 to 25 °C. Observations on mercury-filled dilatometers were made through a window in the pressure system. No time effects or hysteresis phenomena were observed. The specific volume V in cm3/e over the range studied can be represented by VV0,25{1 + A(t ? 25)}{1 + [α25k1(t ? 25)]P + [β25k2(t ? 25)]P2}where P is the pressure in kg/cm2, and t the temperature in °C. The constants for the unvulcanized and for the peroxide-cured samples are:
  • V0,25= 1.0951 and 1.1032 cm3/g;
  • 104A = 6.54 and 6.36 per degree;
  • 106α25= −50.5 and −50.4 (kg/cm2)−1;
  • 106k1 = −0.227 and −0.203 per degree;
  • 109β25= 10 and 11.5 (kg/cm2)−2;
  • and 109k2=0.048 and 0.073 per degree, respectively. The compressibility of unvulcanized natural rubber at 25° and 1 kg/cm2 is thus 50.5×10−6 (kg/cm2)−1 falling to 40.6×10−6 (kg/cm2) −1 at a pressure of 500 kg/cm2. It is concluded that a low degree of vulcanization produces no significant changes in the constants listed. The values are not far different from those obtained by extrapolating to zero sulfur content the observations of Scott on the rubbersulfur system. Calculations of values of compressibility (and its reciprocal the bulk modulus), “internal pressure”, bulk wave velocity, difference between specific heats, and several other physical properties are in reasonable agreement with those obtained by direct observation by other workers. For the prediction of values at pressures above 500 kg/cm2 the use of the Tait equation is recommended.
  相似文献   

5.
The NPDGamma experiment will measure the parity-violating directional gamma ray asymmetry Aγ in the reaction n+pd+γ. Ultimately, this will constitute the first measurement in the neutron-proton system that is sensitive enough to challenge modern theories of nuclear parity violation, providing a theoretically clean determination of the weak pion-nucleon coupling. A new beam-line at the Los Alamos Neutron Science Center (LANSCE) delivers pulsed cold neutrons to the apparatus, where they are polarized by transmission through a large volume polarized 3He spin filter and captured in a liquid para-hydrogen target. The 2.2 MeV gamma rays from the capture reaction are detected in an array of CsI(Tl) scintillators read out by vacuum photodiodes operated in current mode. We will complete commissioning of the apparatus and carry out a first measurement at LANSCE in 2004–05, which would provide a statistics-limited result for Aγ accurate to a standard uncertainty of ±5 × 10−8 level or better, improving on existing measurements in the neutron-proton system by a factor of 4. Plans to move the experiment to a reactor facility, where the greater flux would enable us to make a measurement with a standard uncertainty of ±1 × 10−8, are actively being pursued for the longer term.  相似文献   

6.
Cesium dihydrogen phosphate (CsH2PO4, CDP) and dodecaphosphotungstic acid (H3PW12O40·nH2O, WPA·nH2O) were mechanochemically milled to synthesize CDP–WPA composites. The ionic conductivities of these composites were measured by an ac impedance method under anhydrous conditions. Despite the synthesis temperatures being much lower than the dehydration and phase-transition temperatures of CDP under anhydrous conditions, the ionic conductivities of the studied composites increased significantly. The highest ionic conductivity of 6.58×10−4 Scm−1 was achieved for the 95CDP·5WPA composite electrolyte at 170 °C under anhydrous conditions. The ionic conduction was probably induced in the percolated interfacial phase between CDP and WPA. The phenomenon of high ionic conduction differs for the CDP–WPA composite and pure CDP or pure WPA under anhydrous conditions. The newly developed hydrogen interaction between CDP and WPA supports anhydrous proton conduction in the composites.  相似文献   

7.
8.
Earlier studies of the dissociation constants of monoethanolammonium and diethanolammonium ions and the thermodynamic constants for the dissociation processes have been supplemented by a similar study of triethanolammonium ion from 0° to 50° C. The dissociation constant (Kbh) is given by the formula ?log Kbh = 1341.16/T + 4.6252 ? 0.0045666Twhere T is in degrees Kelvin. The order of acidic strengths of the ions is as follows: Triethanolammonium >diethanolammonium>monethanolammonium. Conversely, monoethanolamine is the strongest of the three bases. The thermodynamic constants for the dissociation of one mole of triethanolammonium ion in the standard state at 25° C are as follows: Heat content change (ΔH°) 33.450 joule mole−1; entropy change (ΔS°), −36.4 joule deg−1 mole−1; heat-capacity change (ΔCp°), 52 joule deg−1 mole−1.  相似文献   

9.
The effect of an electric field on the antibacterial activity of columnar aligned silver nanorods was investigated. Silver nanorods with a polygonal cross section, a width of 20–60 nm and a length of 260–550 nm, were grown on a titanium interlayer by applying an electric field perpendicular to the surface of a Ag/Ti/Si(100) thin film during its heat treatment at 700 °C in an Ar+H2 environment. The optical absorption spectrum of the silver nanorods exhibited two peaks at wavelengths of 350 and 395 nm corresponding to the main surface plasmon resonance bands of the one-dimensional silver nanostructures. It was found that the silver nanorods with an fcc structure were bounded mainly by {100} facets. The antibacterial activity of the silver nanorods against Escherichia coli bacteria was evaluated at various electric fields applied in the direction of the nanorods without any electrical connection between the nanorods and the capacitor plates producing the electric field. Increasing the electric field from 0 to 50 V cm−1 resulted in an exponential increase in the relative rate of reduction of the bacteria from 3.9×10−2 to 10.5×10−2 min−1. This indicates that the antibacterial activity of silver nanorods can be enhanced by applying an electric field, for application in medical and food-preserving fields.  相似文献   

10.
We report a preliminary value for the zero magnetic field Na 2S(f = 1, m = − 1) + Na 2S(f = 1, m = − 1) scattering length, a1,−1. This parameter describes the low-energy elastic two-body processes in a dilute gas of composite bosons and determines, to a large extent, the macroscopic wavefunction of a Bose condensate in a trap. Our scattering length is obtained from photoassociative spectroscopy with samples of uncondensed atoms. The temperature of the atoms is sufficiently low that contributions from the three lowest partial waves dominate the spectrum. The observed lineshapes for the purely long-range 0g molecular state enable us to establish key features of the ground state scattering wavefunction. The fortuitous occurrence of a p-wave node near the deepest point (Re = 72 a0) of the 0g potential curve is instrumental in determining a1,−1 = (52 ± 5) a0 and a2.2 = (85 ± 3) a0, where the latter is for a collision of two Na 2S(f = 2, m = 2) atoms.  相似文献   

11.
12.
The frequencies of the vibration-rotation spectrum of N2O have been measured from 1830 cm−1 to 2270 cm−1. A number of weak bands have been measured and assigned to “hot bands’’ and isotopic species in normal abundance. By using the Ritz principle and previously measured bands the bending frequency (v2) is calculated as 588.780 cm−1. Frequencies are given for lines arising from the three principal transitions found in this region.  相似文献   

13.
A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment ms, the remanent moment mr, and the intrinsic coercivity Hc of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (mr/ms > 90 %), Hc ≈ 400 A·m−1 (5 Oe), and ms ≈ 2 × 10−7 A·m2 (2 × 10−4 emu).  相似文献   

14.
A systematic study of La-based perovskite-type oxides from the viewpoint of their electronic conduction properties was performed. LaCo0.5Ni0.5Oδ was found to be a promising candidate as a replacement for standard metals used in oxide electrodes and wiring that are operated at temperatures up to 1173 K in air because of its high electrical conductivity and stability at high temperatures. LaCo0.5Ni0.5Oδ exhibits a high conductivity of 1.9 × 103 S cm−1 at room temperature (R.T.) because of a high carrier concentration n of 2.2 × 1022 cm−3 and a small effective mass m∗ of 0.10 me. Notably, LaCo0.5Ni0.5Oδ exhibits this high electrical conductivity from R.T. to 1173 K, and little change in the oxygen content occurs under these conditions. LaCo0.5Ni0.5Oδ is the most suitable for the fabrication of oxide electrodes and wiring, though La1−xSrxCoOδ and La1−xSrxMnOδ also exhibit high electronic conductivity at R.T., with maximum electrical conductivities of 4.4 × 103 S cm−1 for La0.5Sr0.5CoOδ and 1.5 × 103 S cm−1 for La0.6Sr0.4MnOδ because oxygen release occurs in La1−xSrxCoOδ as elevating temperature and the electrical conductivity of La0.6Sr0.4MnOδ slightly decreases at temperatures above 400 K.  相似文献   

15.
In this study, new molecularly imprinted polymer particles (MIP) were synthesised to extract Cu2+ ions from aqueous solutions using radical polymerisation. MIP was developed using the methacrylamide‐ethylene glycol dimethacrylate (EGDMA) cross linking agent, methacrylamide monomer, and ACV initiator by the radical polymerisation method. A comparison of various cross linking agents in MIP production showed that the best cross linking agents are EGDMA and gallic acid. The template ions were removed by leaching with 0.100 M HCl. The polymer particles were characterised by FTIR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effect of different parameters such as cross linkers, pH, time, maximum adsorption capacity, and kinetic and isotherm adsorption were investigated. The best conditions were determined (pH = 8.0, t = 10 min, and q m  = 262.53 mg g−1). The adsorption data were best fitted by Freundlich isotherm and pseudo second order kinetic models, as well. Due to its high adsorption capacity and multi‐layer behaviour, this method is an easy, fast and safe way to extract cations. Removal of Cu2+ in certified tap water and rain water was demonstrated and the industrial wastewater sample (Charmshahr, Iran) with which the MIP was developed using Methacrylamide‐ Ethylene Glycol Dimethacrylate (EGDMA) was good enough for Cu2+ determination in matrices containing components with similar chemical property such as Co2+, Zn2+, Fe2.  相似文献   

16.
We synthesize ScCoO3 perovskite and its solid solutions, ScCo1−xFexO3 and ScCo1−xCrxO3, under high pressure (6 GPa) and high temperature (1570 K) conditions. We find noticeable shifts from the stoichiometric compositions, expressed as (Sc1−xMx)MO3 with x = 0.05–0.11 and M = Co, (Co, Fe) and (Co, Cr). The crystal structure of (Sc0.95Co0.05)CoO3 is refined using synchrotron x-ray powder diffraction data: space group Pnma (No. 62), Z = 4 and lattice parameters a = 5.26766(1) Å, b = 7.14027(2) Å and c = 4.92231(1) Å. (Sc0.95Co0.05)CoO3 crystallizes in the GdFeO3-type structure similar to other members of the perovskite cobaltite family, ACoO3 (A3+ = Y and Pr-Lu). There is evidence that (Sc0.95Co0.05)CoO3 has non-magnetic low-spin Co3+ ions at the B site and paramagnetic high-spin Co3+ ions at the A site. In the iron-doped samples (Sc1−xMx)MO3 with M = (Co, Fe), Fe3+ ions have a strong preference to occupy the A site of such perovskites at small doping levels.  相似文献   

17.
Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.  相似文献   

18.
We report a preliminary value for the zero magnetic field Na 2S(f = 1, m = − 1) + Na 2S(f = 1, m = − 1) scattering length, a1,−1. This parameter describes the low-energy elastic two-body processes in a dilute gas of composite bosons and determines, to a large extent, the macroscopic wavefunction of a Bose condensate in a trap. Our scattering length is obtained from photoassociative spectroscopy with samples of uncondensed atoms. The temperature of the atoms is sufficiently low that contributions from the three lowest partial waves dominate the spectrum. The observed lineshapes for the purely long-range 0g molecular state enable us to establish key features of the ground state scattering wavefunction. The fortuitous occurrence of a p-wave node near the deepest point (Re = 72 a0) of the 0g potential curve is instrumental in determining a1,−1 = (52 ± 5) a0 and a2,2 = (85 ± 3) a0, where the latter is for a collision of two Na 2S(f = 2, m = 2) atoms.  相似文献   

19.
Integrated near infrared (NIR) absorbance has been used to determine the absorptivity of the υ2 + υ3 combination band of the asymmetric stretch (υ2) and the bending vibration (υ3) for water in several organic solvents. Absorptivity measured in this way is essentially constant across the absorption envelope and is found to be 336 L mol−1 cm−1 with a standard deviation of 4 L mol−1 cm−1 as estimated from a least squares fit of a straight line to data from water concentrations between 0.01 mol/L and 0.06 mol/L. Absorptivity measured from the peak maximum of the υ2 + υ3 combination band of water varies with the type of hydrogen bonding of the water molecule because the shape of the NIR absorption envelope changes with the hydrogen bonding.Because the integrated NIR absorptivity of the υ2 + υ3 combination band of water is essentially constant across the absorption envelope, the NIR absorption envelope reflects the distribution of hydrogen bonding of the water. The shape and location of the absorption envelope appear to be governed mostly by the number of hydrogen bonds from the water molecules to easily polarized atoms. Water that is a donor in hydrogen bonds to atoms which are not easily polarized (such as the oxygen of a typical carbonyl group) absorbs near 5240 cm−1 to 5260 cm−1. Water that donates one hydrogen bond to an easily polarized atom (such as a water molecule oxygen) absorbs near 5130 cm−1 to 5175 cm−1, and water that donates two hydrogen bonds to easily polarized atoms is estimated to absorb near 5000 cm−1 to 5020 cm−1. Water donating two hydrogen bonds to other water molecules may be said to be in a water-like environment. In no case does a small amount of water absorbed in a host material appear to have a water-like environment.  相似文献   

20.
The infrared spectrum of the v2+v6 band of C13C12H6 has been analyzed and a value of B0= 0.64865 ±0.00005 cm−1 determined. When this value is combined with that found in recent work on isotopically normal ethane, a “rs value of 1.527±0.004 A for the carboncarbon bond distance is obtained. (Uncertainties are probable errors.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号