首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mountain crowberry (Empetrum nigrum ssp. hermaphroditum) is a keystone species in northern ecosystems and exerts important ecosystem-level effects through high concentrations of phenolic metabolites. It has not been investigated how crowberry phenolics will respond to global climate change. In the tundra, grazing by reindeer (Rangifer tarandus) affects vegetation and soil nutrient availability, but almost nothing is known about the interactions between grazing and global climate change on plant phenolics. We performed a factorial warming and fertilization experiment in a tundra ecosystem under light grazing and heavy grazing and analyzed individual foliar phenolics and crowberry abundance. Crowberry was more abundant under light grazing than heavy grazing. Although phenolic concentrations did not differ between grazing intensities, responses of crowberry abundance and phenolic concentrations to warming varied significantly depending on grazing intensity. Under light grazing, warming increased crowberry abundance and the concentration of stilbenes, but decreased e.g., the concentrations of flavonols, condensed tannins, and batatasin-III, resulting in no change in total phenolics. Under heavy grazing, warming did not affect crowberry abundance, and induced a weak but consistent decrease among the different phenolic compound groups, resulting in a net decrease in total phenolics. Our results show that the different phenolic compound groups may show varying or even opposing responses to warming in the tundra at different levels of grazing intensity. Even when plant phenolic concentrations do not directly respond to grazing, grazers may have a key control over plant responses to changes in the abiotic environment, reflecting multiple adaptive purposes of plant phenolics and complex interactions between the biotic and the abiotic factors.  相似文献   

2.
Sheep grazing is known to influence soil organic carbon (SOC) storage and dynamics in rangelands. However, very little is known of grazing impacts on measurable SOC pools associated with primary particles, particulate organic matter (POM) and carbohydrates in the heavily grazed rangelands of Zagros Mountains, Iran. Bulk SOC, total nitrogen (N), POM and hot-water extractable carbohydrates (HWC) as well as different SOC and N fractions in particle-size separates were studied in natural mountainous rangelands of arid (Boroujen with 255?mm annual rainfall) and semi-arid (Sabzkouh with 860?mm annual rainfall) sites, Central Zagros. Two sheep grazing regimes including grazed and ungrazed (for 20?C25?years) rangelands with four replicates were identified as the grazing treatments at each site. Soil samples (0?C15?cm) were taken and analyzed for bulk SOC, total N, POM, HWC, and SOC and N associated with physical fractions. Bulk SOC contents were similar for both ungrazed and grazed regimes, while total N contents significantly decreased under grazed conditions. Bulk soil POM and HWC contents decreased considerably and clearly by sheep grazing, indicating that these fractions of total soil organic matter (SOM) pool may be suitable indicators for detecting the grazing effects on bulk SOC changes and storage in these arid and semi-arid ecosystems. Semi-arid rangeland sites contained more bulk SOC, total N and POM contents than arid rangeland sites. These differences were primarily due to the large differences in vegetation composition, annual rainfall and soil conditions between the two rangelands. After 20?C25?years of grazing over 10?C33?% of SOC and total N losses occurred in the sand- and clay-size fractions with 10?% increases in the silt fraction. This means sheep grazing increases the contribution of the silt fraction to bulk soil N. We found evidence that sheep grazing decreases soil POM and HWC pools, and the sand fraction C, suggesting a lower recent annual input of decomposable organic C in heavily grazed rangelands. Sheep grazing had no influence on the potential C mineralization of the bulk soil at the semi-arid site (Sabzkouh), but reduced C mineralization at the arid-site (Boroujen), indicating that sheep grazing may affect SOC dynamics by changes in substrate quality at the former, but by substrate quantity at the later. In brief, long-term sheep grazing can potentially lead to losses of both labile and no-labile SOM in these arid and semi-arid rangelands.  相似文献   

3.
Sheep (Ovis aries L.) grazing, a cost-effective method of weed control compared to herbicide application and tillage, may influence N cycling by consuming crop residue and weeds and returning N through feces and urine to the soil. The objective of this experiment was to evaluate the effect of sheep grazing compared to tillage and herbicide application for weed control on soil particulate and active soil N fractions in dryland cropping systems. Our hypothesis was that sheep grazing used for weed control would increase particulate and active soil N fractions compared to tillage and herbicide application. Soil samples collected at the 0–30 cm depth from a Blackmore silt loam were analyzed for particulate organic N (PON), microbial biomass N (MBN), and potential N mineralization (PNM) under dryland cropping systems from 2009 to 2011 in southwestern Montana, USA. Treatments were three weed management practices [sheep grazing (grazing), herbicide application (chemical), and tillage (mechanical)] as the main plot and two cropping sequences [continuous spring wheat (Triticum aestivum L.; CSW) and spring wheat–pea (Pisum sativum L.)/barley (Hordeum vulgare L.) mixture hay–fallow; W–P/B–F] as the split-plot factor arranged in randomized complete block with three replications. The PON and MBN at 0–30 cm were greater in the chemical or mechanical than the grazing treatment with CSW. The PNM at 15–30 cm was greater in the chemical or mechanical than the grazing treatment in 2009 and 2011 and at 5–15 cm was greater with W–P/B–F than CSW in 2010. From 2009 to 2011, PON at 0–30 cm and PNM at 15–30 cm reduced from 2 to 580 kg N ha?1 year?1 in the grazing and chemical treatments, but the rate varied from ?400 to 2 kg N ha?1 year?1 in the mechanical treatment. Lower amount of labile than nonlabile organic matter returned to the soil through feces and urine probably reduced soil active and coarse organic matter N fractions with sheep grazing compared to herbicide application and tillage for weed control. Reduction in the rate of decline in N fractions from 2009 to 2011 compared to the herbicide application treatment, however, suggests that sheep grazing may stabilize N fractions in the long-term if the intensity of grazing is reduced. Animal grazing may reduce soil N fractions in annual cropping systems in contrast to known increased fractions in perennial cropping systems.  相似文献   

4.
5.
The effects of different grazing intensities on in situ methane flux and the structure and diversity of the methanotrophic community are measured in the typical grassland of Inner Mongolia. Four grazing intensity sites founded in 1989, control (CK), low-intensity grazing (LG), middle-intensity grazing (MG) and heavy-intensity grazing (HG), were selected. Group-specific PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) of 16S rRNA genes for the type I and type II methanotrophs was used to characterize the composition of the methanotrophic community. DGGE patterns were further analyzed using the method of the Shannon-wiener index H and non-metric multi-dimensional scaling (MDS). The results showed that there were no significant differences in methane flux among different sites, yet methanotrophic communities showed significant differences. MDS analysis showed that type I methanotroph community composition at the CK site were significantly different from the three other sites. For type II methanotrophic community composition, it was similar between CK and HG site, and between LG and MG site, while that at the former two sites were significantly different from latter two ones. Additionally Shannon indices of type II methanotrophs were higher at the LG and MG sites than two other sites. Though grazing intensities had an impact on the structure of the methanotrophic community, management-induced changes in the structure of methanotrophic community did not reflect methane consumption capacity across sites. These results suggest that methane consumption is a complex process in soil, and we should be cautious when speculating on the change of methane consumption rates based on a change of methanotrophic community structure.  相似文献   

6.
Although a significant fraction of the global soil?Catmosphere exchange of greenhouse gases (GHGs) occurs in semi-arid zones little is known about the magnitude of fluxes in grazed steppe ecosystems and the interference with grazing intensity. In order to assess GHG burdens and to identify options of climate-optimized livestock farming, GHG emissions of sheep grazing in Inner Mongolia steppe were analyzed. Carbon sequestration and field-fluxes of methane (CH4) and nitrous oxide (N2O) were measured at a range of steppe sites differing in grazing intensity and management, i.e. ungrazed (UG), ungrazed with hay cutting (HC), lightly grazed (LG), moderately grazed (MG), and heavily grazed (HG). In addition, GHG emissions from enteric fermentation, manure management, and farming inputs (i.e. fossil fuels) were quantified for LG, MG, and HG. Monte Carlo simulation was used to estimate uncertainty. Sheep grazing changed the net GHG balance of the steppe from a significant sink at UG (?1476?±?2481?kg CO2eq ha?1?year?1) to a significant source at MG (2350?±?1723?kg CO2eq ha?1?year?1) and HG (3115?±?2327?kg CO2eq ha?1?year?1). In a similar way, the GHG intensity increased from 8.6?±?79.2?kg CO2eq?kg?1 liveweight gain at LG up to 62.2?±?45.8 and 62.6?±?46.7?kg CO2eq?kg?1 liveweight gain at MG and HG, respectively. GHG balances were predominantly determined by CO2 from changes in topsoil organic carbon. In grazing systems, CH4 from enteric fermentation was the second most important component. The results suggest that sheep grazing under the current management changes this steppe ecosystem from a sink to a source of GHGs and that grazing exclusion holds large potential to restore soil organic carbon stocks and thus to sequester atmospheric CO2. The balance between grazing intensity and grazing exclusion predominantly determines GHG balances of grass-based sheep farming in this region. Therefore, a high proportion of ungrazed land is most important for reducing GHG balances of sheep farms. This can be either achieved by high grazing intensity on the remaining grazed land or by confined hay feeding of sheep.  相似文献   

7.
Soil nutrient supply in rangelands depends on the maintenance and performance of soil microbiological communities. In this study we investigated how different rangeland management systems affects the structure and function of soil microbial communities in the clayey grassland and sandy savanna ecosystems, South Africa. These ecosystems differ in climate, soil and vegetation, with the sandy savanna ecosystem being drier, and encroached by bush. Soils were sampled under continuous and rotational grazing systems along a gradient with increasing grazing pressure. Analyses comprised of enzyme activities and phospholipid fatty acids (PLFA). The results revealed that the clayey grassland ecosystem displayed elevated enzyme activities and PLFA contents compared with the drier, sandy savanna ecosystem, irrespective of the rangeland management practices, likely because soil texture played a significant role in maintaining microbial communities. However, when microbial activity was normalized to carbon, nitrogen and microbial biomass, specific enzyme activities were significantly higher in the sandy savanna ecosystem, indicating a more efficient functioning of microbes here. Furthermore, these microbial parameters were more sensitive to grazing pressure in the clayey grassland ecosystem than other chemical or physical soil properties, whereas in the sandy savanna ecosystem this was not the case. Decreasing the grazing pressure on rangeland, as, e.g., done by commercial farmers practicing rotational grazing, appeared to stimulate microbial performance and thus microbial mediated nutrient mineralization with positive consequences on plant growth.  相似文献   

8.
Soil nitrogen transformation has been the subject of growing attention in many semi-arid grassland ecosystems. In our study, we employed an intact soil core in situ incubation technique and measured seasonal changes in soil net nitrogen mineralization and nitrification rates. The measurements were taken from the upper 0–10 cm soil layer of a permanent grassland during a growing season in a 8.5-year field experiment on the Loess Plateau, China that had four grazing intensities (0, 2.7, 5.3 and 8.7 sheep ha−1). Our results demonstrate marked seasonal variations in inorganic nitrogen pools, net nitrogen mineralization and net nitrification. The rates of mineralization and nitrification were highest in August and lowest in September. No consistent differences in monthly net nitrogen mineralization and monthly nitrification rates were observed among the different grazing intensities. Sheep grazing stimulated nitrogen transformation, and the most stimulation occurred at a heavy grazing intensity of 8.7 sheep ha−1. The mean soil net nitrification rate was positively correlated with the soil C/N ratio and pH. The mean N mineralization rate was negatively correlated with soil organic carbon, but was positively correlated with the soil C/N ratio. Our study demonstrated net nitrogen mineralization and nitrification rates were strongly linked to grazing intensity, soil temperature and moisture content.  相似文献   

9.
Long-term integrated crop-livestock system enables constant and more efficient nutrient cycling because animal, pasture and crop residues release nutrients at different rates. Therefore, appropriate management of these systems is needed to maximize benefits from nutrient cycling. The objective of this study was to evaluate how grazing intensity affected the release rates of phosphorus (P) and potassium (K) in pasture, dung and soybean residues in a no-till long-term integrated crop-livestock system. The experiment was established in 2001 on a clayey Oxisol after soybean harvest. Treatments consisted of pasture with sward heights maintained at 1020, 30 and 40 cm by different cattle stocking rates and a non-grazed (NG) treatment. Decomposition and release rates of nutrients in the pasture and dung were determined using litter bags, which were installed at soybean seeding and pasture seeding during two pasture-crop cycles (2009–2011). Lighter grazing intensities resulted in greater P release rate from pasture and dung residues. Pasture and dung residues released K at a very high rate and were not influenced by grazing intensity. The P and K released from soybean residue were not affected by grazing intensity; however, decomposition of soybean leaves was greater than of stems. Greatest rates of total P and K released were from pasture and dung residues under lighter grazing intensities and in the NG areas. Large amounts of P (~25 kg ha?1) and K (~130–180 kg ha?1) were cycled in a complete soybean-beef cattle integrated system and must be considered in the fertilization management.  相似文献   

10.
Sampels S  Wiklund E  Pickova J 《Lipids》2006,41(5):463-472
Our aim was to compare the effects of two pelleted diets containing differing FA composition with natural lichen pasture on reindeer's meat FA composition. In addition we wanted to increase the knowledge about reindeer FA metabolism and the effect of animal sex and age on FA composition in reindeer muscle. The trial included five reindeer groups: three grazing, consisting of adult males, adult females, and calves; and two groups of calves fed conventional pellets (CPD) and pellets containing crushed linseed (LPD), respectively, for two months before slaughter. Differences between male and female animals were mainly found in the neutral lipid fraction and related to fatness. Calves differed significantly from adult males and females in FA and lipid class composition. CPD led to a higher ratio of n−6 to n−3 FA compared with grazing. The ratio n−6/n−3 in the polar lipid (PL) fraction of the animals fed LPD was slightly, but not significantly, higher than that in the grazing reindeer. LPD-fed animals had lower proportions of long-chain polyunsaturated FA (LCPUFA), namely 20∶4n−6, 22∶5n−3, and 22∶6n−3, in the PL fraction compared with the grazing animals due to the content of these FA in the natural feed. The animals seemed unable to elongate dietary FA in significant amounts. We conclude that by adding crushed linseed to the pellets it was possible to keep the favorable FA composition of meat from grazing reindeer with regard to the n−6/n−3 ratio but not in LCPUFA.  相似文献   

11.
The morphological evolution of an amorphous carbon film deposited by energetic carbon atoms of 75 eV with various angles of incidence was investigated by molecular dynamics simulation. Normal or near-normal incidence of carbon atoms resulted in a smooth surface of the deposited film. In contrast, a bump-like surface structure emerged and led to rough surfaces at grazing incidences, in agreement with the experiments. The bifurcated growth mode was explained by the impact-induced transport of atoms on the growing surface. The downhill transport of atoms on a sloping surface dominates at normal incidence, which suppresses the evolution of surface irregularities to form a rough surface. However, the dominance of uphill transport at a grazing incidence made the surface irregularities grow to a seed structure, which provided the shadowing effect during carbon deposition. This mechanism mediates initial seed formation and subsequent roughening together with shadowing effects under grazing incidence.  相似文献   

12.
A numerical model is used to determine the grazing collision angle of aerosol particles of a few micrometers in size colliding with infinitely long cylinders of radii of 15 and 30 μm. Collision mechanisms considered are interception and inertial impaction. Reynolds numbers ranging from 1 to 5 are investigated. The grazing angle is found to increase with increasing collision efficiency owing to the combined effect of inertial impaction and interception. An empirical fit is given to relate this angle with the collision efficiency. The size differentiation at different angles and the implications to aerosol filtration are discussed.  相似文献   

13.
Amorphous carbon nitride (a-C:N) thin films were synthesised on steel substrates using reactive ion beam sputtering deposition (RIBSD). A single ion beam is arranged to sputter the graphite target at 75° incidence and concurrently bombard the growing film at grazing incidence angles of the ion beam. Nanoindentation, Raman spectroscopy, FTIR, FT-Raman and XPS were employed to characterise the mechanical and structural properties of the films. It was found that grazing incident bombardment has a significant effect on film structure through an increase in nitrogen content and formation of nitrogen doped structure.  相似文献   

14.
The objective of the experiment with cattle was to produce high quality beef under different feeding conditions and to increase the concentration of essential fatty acids in muscle. In total 10 German Simmental (GS) bulls and 9 German Holstein (GH) steers were kept either on pasture (grass feeding) or in stable (concentrate feeding). Despite biohydrogenation in the rumen, linolenic acid (C18:3n‐3) contained in grass was absorbed and deposited into the lipids of muscle. This led to a significantly (p ≤ 0.05) higher content of n‐3 fatty acids in the muscle lipids of grazing cattle. The relative amount of total n‐3 fatty acids increased from 1.4 g/100 g fatty acid methyl ester (%FAME) in the intensively fed Simmental bulls to 5.5 %FAME in grass fed cattle. The n‐6/n‐3 ratio of pasture grazing GS bulls was 1.3 in contrast to 13.7 of the animals kept in the byre. The total n‐3 fatty acid concentration in beef muscle increased from 24.6 mg (concentrate) to 108.6 mg/100 g wet weight (grazing). In GH steers the total n‐3 fatty acid concentration was significantly (p ≤ 0.05) increased up to 86.3 mg/100 g wet weight in pasture grazing steers compared to 28.8 mg/100 g wet weight in animals fed the concentrate. The relative content (%FAME) of CLAcis‐9, trans‐11 (0.6 vs 0.56 %FAME in GS; 0.55 vs 0.52 %FAME in GH) in muscle was not significantly increased by grazing on pasture in comparison to concentrate feeding neither in GS bulls nor in GH steers, respectively.  相似文献   

15.
目的采用一步法荧光定量RT-PCR检测新疆伊犁地区天然牧场放养马群脑组织尼帕病毒(NipahVirus,NiV)核蛋白N基因的表达,调查该地区马群中枢神经系统NiV感染的流行状况。方法针对NiV高度保守区N基因设计特异性引物和探针,建立检测马脑组织样本中低浓度NiV RNA的一步法荧光定量RT-PCR方法,对该方法的敏感性及特异性进行验证,并对新疆伊犁地区天然牧场放养且未接种NiV疫苗的183匹马脑组织进行检测。结果一步法荧光定量RT-PCR的最低检出限为1.1×102 copies/μl;与NiV同为亨尼帕病毒属,且高度同源的亨德拉病毒(Hendra Virus,HeV)及同为单股负链的博尔纳病病毒(Borna Disease Virus,BDV)均无交叉反应;183份马脑组织样本未检出阳性样本。结论新疆伊犁地区天然牧场放养马匹中未发现NiV感染,该地区短时间内爆发NiV的可能性较小。  相似文献   

16.
A field study on the effects of current grazing practices on plants in central Norway found no increase in either phenolic compounds or proteinase inhibitors in plants subjected to grazing by sheep. This could either reflect insufficient damage to the plants due to low grazing intensity or a lack of a long-term response of the plants to grazing. In this study, we tested the hypothesis that damage to forage plants used by sheep and rodents in Norwegian alpine rangelands can stimulate a long-term (at least 2-week) increase in levels of defensive compounds. We used clipping experiments to manipulate the severity and timing of damage to eight species of common plants used by herbivores in Norway. Under greenhouse conditions (i.e., climate-controlled), we subjected mature plants to one of four clipping treatments: control (0% leaf tissue removed), low (10–15% leaf tissue removed), high (70–75% leaf tissue removed), or sustained (15% of leaf tissue removed every other day up to a total removal of 75%, i.e., five clippings over 9 days). Samples were collected 2 weeks after final clipping and analyzed for concentrations of total phenolics, proteinase inhibitors, ratio of total phenolics to soluble proteins, and ratio of proteinase inhibitors to soluble plant proteins. As expected, the different species of plants responded differently to simulated herbivory, but most plants either showed no response to mechanical wounding and tissue loss or had reduced defensive compounds. Thus, our results do not support the hypothesis that herbivory induces a long-term increase in defensive compounds in alpine rangelands of Norway, a result consistent with those from field studies.  相似文献   

17.
Increasing land degradation has prompted interest in conservation agriculture which includes growing cover crops. Besides providing soil cover, decaying cover crops may release substantial amounts of nutrients. Decomposition, N and P release from winter cover crops [grazing vetch (Vicia darsycarpa), forage peas (Pisum sativum) and oats (Avena sativa)] were assessed for suitability in a cropping system found in the smallholder irrigation sector of South Africa. Nitrogen and P contribution to maize growth by cover crop residues was also estimated. Decrease in mass of cover crop residues was highest in grazing vetch (7% remaining mass after 124 days) followed by forage peas (16%) and lastly oats (40%). Maximum net mineralized N and P were higher for grazing vetch (84.8 mg N/kg; 3.6 mg P/kg) than for forage peas (66.3 mg N/kg; 2.7 mg P/ha) and oats (13.7 mg N/kg; 2.8 mg P/kg). Grazing vetch and forage pea residues resulted in higher N contribution to maize stover than oat residues. Farmers may use grazing vetch for improvement of soil mineral N while oats may result in enhancement of soil organic matter and reduction land degradation because of their slow decomposition. Terminating legume cover crops a month before planting summer crops synchronizes nutrient release from winter-grown legume cover crops and uptake by summer crops.  相似文献   

18.
Nutrients, including nitrogen (N), exported from agricultural systems contribute to eutrophication and the development of algal blooms. Understanding the relative effect of farm management on nutrient export will indicate the extent to which farmers can potentially mitigate this process. Six years of monitoring surface runoff from rain-fed and irrigated dairy pastures was carried out in south-eastern Australia. Over the monitoring period, the flow-weighted mean annual total N (TN) concentrations in runoff varied between 8.2 and 29 mg/l for rain-fed pasture and 8.7 and 58 mg/l for irrigated pasture. An additive component model describing N concentrations separated the management (grazing and fertiliser) and year effects from other processes. The model accounted for 40 and 47% of the variation in N concentrations for the rain-fed and irrigated pastures, respectively. While fertiliser application, grazing and year had a significant effect on concentrations, other variables that are not necessarily under management control significantly affected N export. With current knowledge, improved management of pasture-based systems such as improved timing of fertiliser application and grazing relative to runoff may only result in a small decrease in N export. The remainder of the variability was attributed to environmentally mediated changes of N concentrations in runoff water. The collection of more detailed information on environmental parameters including soil moisture and soil temperature is proposed, to enable a better prediction of N concentrations and therefore improved understanding of potential management strategies.  相似文献   

19.
Nutrient Cycling in Agroecosystems - Limited understanding of the effects of enhanced nitrogen (N) addition and grazing exclusion (E) on greenhouse gases fluxes (GHGs: CO2, CH4, and N2O) in...  相似文献   

20.
In rotational grazing systems, it is common practice to apply nitrogen (N) fertiliser within 24 h of grazing thus resulting in addition of N fertiliser to urine patches. However, there is a lack of information on what the potential is, if any, to use this common practice to deliver N stabilisers to urine patches via N fertiliser formulations to reduce N losses to the environment. The objective of this study was to investigate the effect of applying urea fertiliser (with and without N stabilisers) 24 h after urine patch deposition on NH3 emissions. Treatments included (1) urine, (2) urea, (3) urine + urea, (4) urine + urea with N-(butyl)thiophosphoric triamide (NBPT), (5) urine + urea with dicyandiamide (DCD) and (6) urine + urea with both NBPT and DCD. Treatments were applied on two occasions, May and June, under contrasting soil moisture and meteorological conditions to a temperate grassland site. Urine (569–883 kg N ha?1) was applied 24 h prior to urea fertiliser application (40 kg N ha?1). There was no significant reduction or increase in NH3 emission factors from treatments receiving the two N stabilisers (NBPT and DCD) in the May and June application timings compared to the other treatments. The results of this study suggest that common farm practice of applying N fertiliser the day after grazing in rotational grazing systems offers no reduction in NH3 emission rates from urine patches where the N stabiliser inclusion rate is designed to reduce the fertiliser-based N losses only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号