首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase equilibrium diagram was determined for the Sc2O3-Ga2O3 system. A quenching furnace, wound with 60 percent Pt—40 percent Rh wire, was employed for experiments conducted at temperatures up to 1,800 °C. An induction furnace, having an iridium crucible susceptor, was used to obtain higher temperatures. Temperatures in the quenching furnace were measured with both an optical pyrometer and a 95 percent Pt—5 percent Rh versus 80 percent Pt—20 percent Rh thermocouple. The melting point of Ga2O3 was determined as 1,795 ±15 °C. Experiments at temperatures as high as 2,405 °C failed to melt Sc2O3. Two intermediate binary phases, a compound believed to be 6Sc2O3·5Ga2O3 and a solid solution occur in the system. The solid solution phase appears as a single phase in the region roughly defined by the compositional limits of 55 to 73 mole percent Ga2O3 at the solidus. The 6:5 compound, stable only at high temperatures, melts incongruently at 1,770 ±15 °C and decomposes below 1,700 ±15 °C. The compound appears to have orthorhombic symmetry with a=13.85 A, b= 9.80 A, and c=9.58 A. The indicated uncertainties in the melting points are a conservative estimate of the overall inaccuracies.  相似文献   

2.
The phase diagram of the uranium-platinum system was constructed from data obtained by thermal analysis, metallographic examination, and X-ray diffraction. The system is characterized by four intermetallic compounds: UPt, formed peritectoidally at 961° C; UPt2, formed peritectically at 1,370° C; UPt3, melting congruently at 1,700° C; and UPt5, formed peritectically at 1,460° C. One eutectic occurs at 1,005° C and 12 a/o platinum, and a second at 1,345° C and 87.5 a/o platinum. The maximum solubilities are 4.5 a/o uranium in platinum and 5 a/o platinum in gamma-uranium. Platinum lowers the gamma-beta uranium transformation to 705° C and the beta-alpha transformation to 589° C.  相似文献   

3.
The equilibrium phase diagram was determined for the Eu2O3−In2O3 system. An induction furnace, having an iridium crucible as the heating element (susceptor), was used to establish the solidus and liquidus curves. The 1:1 composition melts congruently at 1745 ± 10 °C. Melting point relations suggest that the 1:1 composition is a compound with solid solution extending both to 31 mole percent In2O3 and 71 mole percent In2O3. The compound is pseudohexagonal with aH = 3.69 A and cH = 12.38 A. Isostructural phases also occur in the 1:1 mixtures of both Gd2O3 and Dy2O3 with In2O3. The melting points of Eu2O3 and In2O3 were determined to be 2,240 ± 10 °C and 1910 ± 10 °C respectively. A eutectic occurs in the Eu2O3−In2O3 system at 1,730 °C and about 73 mole percent In2O3. The indicated uncertainties in the melting points are conservative estimates of the overall inaccuracies of temperature measurement.  相似文献   

4.
The phase relations for the systems AgI-NaI and AgI-KI have been determined for the temperature range from room temperature to 685° C, using differential thermal analysis techniques. The AgI-NaI system has a eutectic at 50 mole percent NaI and 384° C. The AgI-KI system has eutectics at 20.8 and 28.5 mole percent KI and 254° C and 244° C, respectively. A compound of formula KAg3I4 is formed with a congruent melting point of 268° C.  相似文献   

5.
Stability relationships of the four polymorphs of bismuth oxide have been determined by means of DTA and high-temperature x-ray studies. The stable low-temperature monoclinic form transforms to the stable cubic form at 730 ±5 °C, which then melts at 825 ± 5 °C. By controlled cooling, the metastable tetragonal phase and/or the metastable body-centered cubic (b.c.c.) phase appear at about 645 °C. Whereas b.c.c. can be preserved to room temperature, tetragonal will transform to monoclinic between 550 and 500 °C. Tetragonal Bi2O3, however, is easily prepared by decomposing bismutite (Bi2O3·CO2) at 400 °C for several hours. The greatest transition expansion occurs at the monoclinic to cubic inversion, and cubic Bi2O3 shows the greatest coefficient of volume expansion. With exposure to air, Bi2O3 carbonates and partially transforms to bismutite and an unknown phase.  相似文献   

6.
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca–Mg–Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15−x (4.6 ⩽ x ⩽ 12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca–Mg–Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca–Mg–Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.  相似文献   

7.
New data are presented on the phase equilibria and crystal chemistry of the binary systems CaO-Bi2O3 and CaO-CuO and the ternary CaO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for several of the binary CaO-Bi2O3 phases, including corrected compositions for Ca4Bi6O13 and Ca2Bi2O5. The ternary system contains no new ternary phases which can be formed in air at ~700–900 °C.  相似文献   

8.
The three crystalline forms of metaboric acid HBO2 were prepared, purified, and analyzed. Heats of solution in water or of reaction with sodium hydroxide solution were compared with those of orthoboric acid H3BO3(c). The best values for the heats of transition at 25 °C are: (c,I) to (c,II), 2.33±0.23 kcal/mole; (c,II) to (c,III), 1.30±0.05 kcal/mole; (c,I) to (c,III), 3.63±0.24 kcal/mole. The following heats of formation at 25 °C were derived: −192.77 ± 0.35 kcal/mole for the cubic HBO2(c,I), −190.43 ±0.34 kcal/mole for the monoclinic HBO2 (c,II), and −189.13 ± 0.34 kcal/mole for the orthorhombic HBO2(c,III).  相似文献   

9.
Measurements of the heat capacity of methylphosphonyl difluoride (CH3POF2), methyl phosphonyl dichloride (CH3POCl2), and methylphosphonyl chlorofluoride (CH3POClF) were made from about 15 to 335 °K by means of an adiabatic calorimeter. These highly reactive and toxic substances were purified in a completely closed glass apparatus by combining slow crystallization and fractional melting procedures. The purities determined by the freezing-curve method are shown to be generally in agreement with those values obtained by the calorimetric method. From the results of the heat measurements, the triple-point temperature, heat of fusion, and their corresponding estimated uncertainties were found to be, respectively, 236.34±0.05 °K and 11,878±12 J/mole for CH3POF2, 306.14± 0.02 °K and 18,076±15 J/mole for CH3POCl2, and 250.70± 0.20 °K and 11,853±30 J/mole for CH3POClF. Triple-point temperatures obtained by the freezing-curve method are in agreement with the above values. A table of smoothed values of heat capacity, enthalpy, enthalpy function, entropy, Gibbs free energy, and Gibbs free energy function from 0 to 335 °K was obtained from the data. The entropy and its corresponding estimated uncertainty for CH3POF2, CH3POCl2, and CH3POClF in their respective condensed phase at 298.15 °K and saturation pressure was found to be 208.3± 0.3, 164.8± 0.3, and 216.4± 0.4 J/deg mole, respectively. The entropies in the gaseous state at 298.15 °K and 1 atm pressure were found to be 312.7±3, 339.7±3, and 335.0±3 J/deg mole, respectively.  相似文献   

10.
The mass spectra of tetramethylphosphinoborine trimer, [P(CH3)2B(CH3)2]3 (I) and a a compound, P5(CH3)9B5H9, (II) prepared from dimethylphosphinoborine were observed, and the compounds were pyrolyzed at 300 to 500° C. Most peaks in the spectrum of (I) came from the P—B, B—C, and P—C cleavages. The mass spectrum of (II) was much more complicated with evidence for methyl group redistribution.The pyrolysis of both compounds indicates a very complicated mechanism with many unidentifiable compounds. Trends in the formation of volatile products indicate that both compounds are completely decomposed in 4 hr at 450° C. Compound (I) produces trimethylboron, which disappears rapidly above 400° C. Neither (I) nor (II) formed ethane or elemental phosphorus.  相似文献   

11.
Mixtures of hexafluorobenzene and benzene were irradiated in liquid phase by means of a Co60 gamma source at 20° and at 218° C. Perfluoroheptane and various binary mixtures involving perfluoroheptane, hexafluorobenzene, benzene, and cyclohexane were also irradiated at 20° C. Hexafluorobenzene resembled benzene very closely in its behavior upon radiolysis. Generally the fluorocarbon-hydrocarbon mixtures evolved much more SiF4 (indicating the formation of HF, which reacts with the glass vessel) than the pure fluorocarbon components. The polymer from hexafluorobenzene-benzene mixtures was probably rich in cyclohexadiene and cyclohexene units, resembling that from pure benzene, and its composition ratio exhibited a strong “alternating” tendency. The results are discussed in terms of free-radical and excited-state mechanisms. At 218° C hexafluorobenzene and also its mixtures with benzene showed qualitative differences from their behavior at 20° C, although the G values for SiF4 and polymer remained moderate.  相似文献   

12.
In a recent publication, we used a reaction model (model III) to calculate the heat defect for the irradiation of aqueous solutions with ionizing radiation at 21 °C. Subsequent work has revealed that the literature value used for one of the rate constants in the model was incorrect. A revised model (model IIIR) incorporates the correct rate constant for 21 °C. Versions of models III and IIIR were created for irradiations at 4 °C. For our current water calorimetry protocol, the values of the heat defect for H2/O2-water (water saturated with a flow of 43 % H2 and 57 % O2, by volume) at 21 °C predicted by model III and model IIIR are similar but the value for 4 °C predicted by III is 30 % smaller than the value predicted by IIIR. Model IIIR predicts that the values of the heat defect at 21 °C and 4 °C lie within the range −0.023±0.002, in agreement with the values obtained from our water calorimetry measurements done using pure water and H2-saturated water at 21 °C and 4 °C. The yields of hydrogen peroxide in H2/O2-water at 21 °C and 4 °C were measured and agree with the predictions of model IIIR. Our water calorimetry measurements made with pure water and H2-saturated water are now of sufficient quality that they can be used to determine the heat defect for H2/O2-water better than can be done by simulations. However, consistency between the three systems continues to be an excellent check on water purity which is crucial, especially for the pure water system.  相似文献   

13.
A thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for the βγ equilibrium, and good agreement for three-phase βγσ and βγα equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.  相似文献   

14.
From electromotive-force measurements of the cell without liquid junction: Pt;  H2,  HCl (m),  AgCl;  Agthrough the range 0° to 95° C, calculations have been made of (1) the standard potential of the silver–silver-chloride electrode, (2) the activity coefficient of hydrochloric acid in aqueous solutions from m (molality) =0 to m=0.1 and from 0° to 90° C, (3) the relative partial molal heat content of hydrochloric acid, and (4) the relative partial molal heat capacity of hydrochloric acid.The extrapolations were made by the method of least squares with the aid of punch-card techniques. Data from at least 24 cells were analyzed at each temperature, and 81 cells were studied at 25° C. The value of the standard potential was found to be 0.22234 absolute volt at 25° C, and the standard deviation was 0.02 millivolt at 0° C, 0.01 millivolt at 25° C, and 0.09 millivolt at 95° C. The results from 0° to 60° C are compared with earlier determinations of the standard potential and other quantities derived from the electromotive force.  相似文献   

15.
Rifampicin-loaded poly(ε-caprolactone)–b-poly(ethylene glycol)–poly(ε-caprolactone) flower-like polymeric micelles display low aqueous physical stability over time and undergo substantial secondary aggregation. To improve their physical stability, the lyoprotection–lyophilization process was thoroughly characterized. The preliminary cryoprotectant performance of mono- and disaccharides (e.g. maltose, glucose), hydroxypropyl-β-cyclodextrin (HPβCD) and poly(ethylene glycol) (PEG) of different molecular weights was assessed in freeze–thawing assays at −20°C, −80°C and −196°C. The size and size distribution of the micelles at the different stages were measured by dynamic light scattering (DLS). A cryoprotectant factor (fc) was determined by taking the ratio between the size immediately after the addition of the cryoprotectant and the size after the preliminary freeze–thawing assay. The benefit of a synergistic cryoprotection by means of saccharide/PEG mixtures was also assessed. Glucose (1 : 20), maltose (1 : 20), HPβCD (1 : 5) and glucose or maltose mixtures with PEG3350 (1 : 20) (copolymer:cryoprotectant weight ratio) were the most effective systems to protect 1 per cent micellar systems. Conversely, only HPβCD (1 : 5) cryoprotected more concentrated drug-loaded micelles (4% and 6%). Then, those micelle/cryoprotectant systems that displayed fc values smaller than 2 were freeze-dried. The morphology of freeze-dried powders was characterized by scanning electron microscopy and atomic force microscopy and the residual water content analysed by the Karl Fisher method. The HPβCD-added lyophilisates were brittle porous cakes (residual water was between 0.8% and 3%), easily redispersable in water to form transparent systems with a minimal increase in the micellar size, as determined by DLS.  相似文献   

16.
Herein, multivariate Lagrange''s interpolation polynomial (MLIP) and multivariate least square (MLS) methods are used to derive linear and higher‐order polynomials for two varied applications. (1) For an effective fabrication of Pectin degrading Fe3O4‐SiO2 Nanobiocatalyst activity (IU/mg). Here, the three parameters namely: pH value, pectinase loading and temperature as independent variables are optimized for the maximal of anobiocatalyst activity as a dependent variable. (2) For a passive system reliability estimation of decay heat removal (DHR) of a nuclear power plant. The success criteria of the system depend on three types temperature that do not exceed their respective design safety limits and are considered as dependent variables and 14 significant parameters were used as independent variables. Statistically, the validation of these multivariate polynomials are done by testing of hypothesis. Comparative study of the proposed approach gives significance results in the first application have the optimum conditions for maximum activity using linear MLIP method is: 58.64 with pH = 4, pL = 250 and Temp = 4°C. The maximum activity using second order MLIP method is 59.825 and method of MLS is 59.8249 with the optimized values of an independent variables pH = 4, pL = 300 and Temp = 8°C depicted in Table 1. In DHR system, the significance results are obtained and depicted in Table 2.  相似文献   

17.
The liquidus diagram of the BiI3-ZnI2 system has been studied for the first time by differential thermal analysis, x-ray diffraction, and optical microscopy. The crystallization temperatures and melt compositions corresponding to eutectic and transition points have been determined, and a compound of composition ZnBiI5, melting congruently at 400°C, has been identified. Some of its physicochemical properties have been studied.  相似文献   

18.
As a result of a solid-state reaction, a compound with the formula Cd2InVO6 has been obtained for the first time. This compound melts congruently at 1050 ± 10 °C. It crystallises in the monoclinic system and the unit cell parameters are: a = 0.7964(2) nm, b = 1.1311(3) nm, c = 0.6001(1) nm, γ = 104.1°, Z = 4.  相似文献   

19.
Guha  J. P.  Kolar  D. 《Journal of Materials Science》1971,6(9):1174-1177
The phase equilibrium relationships in the binary system BaO-CeO2 have been investigated by thermal analysis, metallographic and X-ray diffraction methods. The system is characterised by the existence of only one compound, namely, BaCeO3 which is found to melt incongruently at 1480±5°C with formation of solid CeO2 and a liquid. A eutectic is found to occur between BaO and BaCeO3 at 46±0.5 mol% CeO2 and its melting point was determined as 1440±5°C. A narrow solid solubility range of BaO in BaCeO3 exists but no solid solubility of BaCeO3 in either BaO or CeO2 was detected.  相似文献   

20.
Phase diagram of the Ge-As-Te system has been investigated by means of physico-chemical methods (differential-thermal analysis/DTA/, X-ray Debye-Scherrer powder patterns and diffraction, microstructure and microhardness). Crystallization fields of the phases: solid solution on the basis of GeTe, As2Te3, GeAs, GeAs2, Ge, As, Te were found. Isotherms of the liquidus surface of these phases were approximately plotted. Apart from the stable phases two metastable phases, X and Y, were found. A compound GeAs2 seems to melt incong ruently in the ternary system, Ge-As-Te, though in the As-Ge binary system it melts congruently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号