首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead zirconate titanate (Pb(Zr,Ti)O3, PZT) thin films were grown on silicon 〈100〉 substrate by aerosol plasma deposition (APD) using solid-state-reacted powder containing donor oxide Nb2O5 when keeping the substrate at room temperature and 200°C. Crystalline phases of the deposited films have been analyzed via X-ray diffractometry (XRD), and microstructure via scanning and transmission electron microscopy (SEM and TEM). Cross-sectional TEM revealed that the microstructure comprised several layers including the deposited PZT film and the platinum-electrode-and-titanium-buffered layers on SiO2–Si substrate. The Pt-electrode layer contained (111)Pt twinned columnar grains with a slight misorientation and forming low-angle grain boundaries among them. The PZT layer contained randomly oriented grains embedded in an amorphous matrix. Some of the PZT grains, oriented with the zone axis Z = [[Twomacr]11]PZT parallel to Z = [111]Pt, were grown epitaxially on the Pt layer by sharing the (111)PZT plane with the (111)Pt twinned columnar Pt crystals. However, the existence of such an orientation relationship was confined to several nanosize grains at and near the PZT-Pt interface, and no gross film texture has been developed. An amorphous grain boundary phase, generated by pressure-induced amorphisation (PIA) in the solid state, was identified by high-resolution imaging. Its presence is taken to account for the densification of the PZT thin films via a sintering mechanism involving an amorphous phase on deposition at 25° and 200°C.  相似文献   

2.
In order to optimize the metalorganic chemical vapor deposition process for PbZrxTi1−xO3 (PZT) thin films, the effect of purge gas species was investigated. Two steps of gas input process for stabilizing reaction chamber pressure, the gas flow prior to PbTiO3 (PTO) seed layer deposition and PZT thin film deposition, were varied and their effect on structural and electrical properties were examined with regard to the memory device application. PZT film properties exhibited remarkable dependency on the gas species before PTO seed deposition, and insignificant dependency on the gas species before PZT film deposition. With the optimized pre-deposition gas flow, PZT thin film showed excellent properties such as high (1 1 1)-orientation (92.2%), high remnant polarization value of 71 μC/cm2 at 3 V. Retention property also showed a heavy dependency on the pre-deposition gas flow that 91.1% of initial charge could be maintained after 100 h of baking at 150 °C.  相似文献   

3.
Lead zirconate titanate (PZT) thin films were deposited by metal-organic chemical vapor deposition (MOCVD) using β-diketonate precursors and 02 at temperatures below 500°C on variously passivated Si substrates. PZT thin films could not be deposited on bare Si substrates, owing to a serious diffusion of Pb into the Si substrate during deposition. Pt/SiO2/Si substrates could partially block the diffusion of Pb, but a direct deposition of PZT thin films on the Pt/SiO2/Si substrates resulted in a very inhomogeneous deposition. A TiO2 buffer layer deposited on Pt/SiO2/Si substrates could partially suppress the diffusion of Pb and produce homogeneous thin films. However, the crystallinity of PZT thin films deposited on the TiO2-buffered Pt/SiO2/Si substrate was not good enough, and the films showed random growth direction. PZT thin films deposited on the PbTiO3-buffered Pt/SiO2/Si substrates had good crystallinity and a- and c-axis oriented growth direction. However, the PZT thin film deposited at 350°C showed fine amorphous phases at the grain boundaries, owing to the low chemical reactivities of the constituent elements at that temperature, but they could be crystallized by rapid thermal anneaiing (RTA) at 700°C. PZT thin film deposited on a 1000-å PbTiO3,-thin-film-buffered Pt/SiO2/Si substrate at 350°C and rapid thermally annealed at 700°C for 6 min showed a single-phase perovskite structure with a composition near the morphotropic boundary composition.  相似文献   

4.
A conducting 8-μm-thick LaNiO3 (LNO) film was deposited on a Ti substrate by aerosol deposition for use as a diffusion barrier between a lead zirconate titanate (PZT) and a Ti substrate during postannealing. The deposited 20-μm-thick PZT films were annealed at 800°C. The PZT film deposited without LNO was cracked and partially detached from the substrate after postannealing, presumably due to a severe reaction with the Ti substrate, while no significant reactions were observed when the LNO buffer layer was used. The remnant polarization and relative dielectric constant of the 20-μm-thick annealed PZT films deposited on the LNO-buffered Ti substrate were 43 μC/cm2 and 1010, respectively.  相似文献   

5.
Compositionally graded Pb(Zr,Ti)O3 thin films were prepared on the Pt(1 1 1)/Ti/SiO2/Si, LNO/Si(1 0 0) and LNO/Pt(1 1 1)/Ti/SiO2/Si substrates by a modified sol–gel method and rapid heat-treatment. The composition depth profile of a typical up-graded film was determined using a combination of auger electron spectroscopy and Ar-ion etching. The crystallographic orientation and the microstructure of the resulting graded PZT thin films on the different substrates were characterized by XRD. The dielectric and ferroelectric properties of the graded PZT films were discussed. The graded PZT films on LNO/Pt/Ti/SiO2/Si and LNO/Si(1 0 0) substrates have larger dielectric constant and remnant polarizations compared to that grown on Pt/Ti/SiO2/Si substrates.  相似文献   

6.
Epitaxial Ba0.5Sr0.5TiO3 (BSTO) thin films were grown on TiN buffered Si (0 0 1) substrates by PLD method and the effects of deposition temperature on their crystallinity and microstructure were studied. BSTO thin films were prepared with substrate temperature ranging from 350 to 650 °C. The BSTO films grown at below 400 °C showed amorphous phase and the film grown at 450 °C showed mixed phase of crystalline and amorphous, where crystalline phase was observed only at the top surface portion of the film. The BSTO films with fully crystalline phase were obtained in the samples deposited at above 500 °C. The (0 0 l) preferred orientation and the crystallinity of the BSTO films were improved with increasing the temperature. The dielectric constant, measured at 100 kHz and at room temperature, of the BSTO film grown at 650 °C was measured to be as high as 1129.  相似文献   

7.
溶胶-凝胶法制备PZT薄膜晶化过程的跟踪监测   总被引:5,自引:1,他引:4  
用溶胶-凝胶技术制备了组成在准同型相界点[m(Zr)/m(Ti)=52/48]附近的钙钛矿相PZT薄膜,并运用原子力显微分析与椭偏法测试相结合的方法跟踪了薄膜的烧结过程.结果表明:钙钛矿相PZT[m(Zr)/m(Ti)=52/48]薄膜晶化发生于约550℃,并伴随着薄膜表面的粗糙化;镀铂硅基片表面粗糙度对PZT薄膜的晶化有很大影响.根据AFM,XRD测试结果,分析了不同热处理条件对PZT薄膜微结构及漏电流特性的影响,提出合适的热处理条件.分析了PZT薄膜钙钛矿相形成温度高于相应粉体的原因  相似文献   

8.
PbZr0.53Ti0.47O3 (PZT) thin films with various preferred crystallographic orientations were synthesized on various substrates using pulsed laser deposition techniques. Larger piezoelectric displacement, which involved the bending vibration of the PZT film/substrate, was observed in randomly oriented PZT thin film than that in (100)- and (111)-preferred texture films. This result was discussed by correlation with the number of effective spontaneous polarization axes in the morphotropic phase boundary of the PZT system. Moreover, polarization fatigue was found to lower the electric-field-induced displacement significantly, indicating a large contribution of ferroelectric domain motion to the piezoelectric response of PZT thin films under bipolar drive.  相似文献   

9.
Porous photocatalytic TiO2 thin films were fabricated by the leaching technique, followed by aerosol deposition. Mixed powders of TiO2 and β-tricalcium phosphate (TCP) were aerosol deposited at room temperature for the initial fabrication of composite films. After the β-TCP phases were leached out from the composite films in a diluted HCl aqueous solution for 24 h, porous TiO2 films remained on the substrate. To fabricate these porous films, the β-TCP content was varied from 10 to 45 wt% and submicrometer-sized pores were formed after leaching. The porous TiO2 films showed strong initial photocatalytic activities due to the adsorption effect of the pores and the enlarged surface area.  相似文献   

10.
The printing of lead zirconate titanate (PZT, Pb(Zr,Ti)O3) piezoelectric thick films on silicon substrates is being studied for potential use as microactuators, microsensors, and microtransducers. A fundamental challenge in the fabrication of useful PZT thick-film devices on silicon is to sinter the PZT to high density at sufficiently low temperature to avoid mechanical or chemical degradation of the silicon substrate. The goal of the present study is to develop and implement suitable electrodes and PZT sintering aids that yield attractive piezoelectric properties for devices while minimizing reactions between the silicon, the bottom electrode, and the PZT thick film. A B2O3-Bi2O3-CdO sintering aid has been found to be superior to borosilicate glass, and the use of a gold/platinum bilayer bottom electrode has resulted in better thermal stability of the electrode/film structure. Films sintered at 900°C for 1 h have relative permittivity of 970 (at 1 kHz), remnant polarization of 20 μC/cm2, coercive field of 30 kV/cm, and weak-field piezoelectric coefficient d 33 of 110 pm/V.  相似文献   

11.
The ferroelectric PZT thin films were prepared on Pt/Ti/SiO2/Si substrate by RF sputtering method followed by the rapid thermal annealing. The preparation of the Pt and Ti thin films as bottom electrode, and their influences on the PZT thin films were studied in details. The substrate temperature during sputtering was room temperature; the rapid thermal annealing temperature was 500°C-750°C and the annealing time was 30-70s. The influences of different preparation parameters on the structure and electric properties were studied with X-ray diffraction technique and RT66A Standardized Ferroelectric Test System. The electric properties of the prepared PZT thin film was: Pa=39μc/cm2, Pr = 9.3 μc/cm2, Ec=28KV/mm, ε=300, p=109ω⋅cm.  相似文献   

12.
A novel aqueous chemical solution was developed as a precursor both for LiNbO3 powder and thin film. In this method, hydrogen peroxide aqueous solution (H2O2) reacts with niobium and lithium alkoxide ethanol solution to form metal peroxide aqueous solution. From this solution, crystalline LiNbO3 were synthesized at a temperature as low as 350°C. LiNbO3 thin films with well-developed grains were fabricated by spin-coating on silicon and sapphire substrates. In comparison with the alkoxide solution method, this peroxide solution method provides significant advantages, such as low weight loss in the sintering process and easy handling.  相似文献   

13.
Graded Pb(Zrx,Ti1−x)O3 films with Zr compositions varied across the thickness direction were deposited on Pt/Ti/SiO2/Si substrate using a conventional spin-coating method. The up- and down-graded PZT films exhibited the perovskite polycrystalline structure. Microstructure investigations of the films showed a dense texture and successive layers of different compositions. The relative permittivities of the up- and down-graded PZT films measured at 1 kHz and room temperature were 1846 and 1019, respectively. Good dielectric and ferroelectric properties as well as the low-temperature processing suggested that the compositionally graded PZT films were promising for memory device applications.  相似文献   

14.
Pb(Zr,Ti)O3 (PZT) thick films were deposited onto stainless-steel substrates by aerosol deposition using different kinds of carrier gases and were irradiated by CO2 laser both during and after deposition, for the recovery of ferroelectricity. The ferroelectric and dielectric properties of PZT films deposited using oxygen and nitrogen gases and irradiated by CO2 laser were superior to those of films deposited using He gas and irradiated by the laser. Some kinds of defects within the film were relaxed by CO2 laser irradiation during deposition, and grain growth in the film was promoted by post-annealing using laser irradiation.  相似文献   

15.
Metallic conductive LaNiO3 thick films with a thickness of 0.5–10 μm were fabricated by a room-temperature-operating powder deposition process—aerosol deposition method. The coated LaNiO3 layers were fairly dense without pores or cracks, and maintained their phase stability due to low-temperature consolidation. The as-deposited LaNiO3 film consisted of ∼10-nm-diameter grains, with a sheet resistance of 10–100 Ω/□, while the post-annealed LaNiO3 film had a sheet resistance of 4.45 Ω/□, which is the lowest value ever reported for an LaNiO3 film. This excellent conductivity result was attributed to the high crystal stability and dense microstructure.  相似文献   

16.
Lead zinc niobate–lead zirconate titanate thick films with a thickness of 50–100 μm were deposited on silicon and alumina substrates using the aerosol deposition method. The effects of excess lead oxide (PbO) on stress relaxation during postannealing were studied. Excess PbO content was varied from 0 to 5 mol%. The as-deposited film had a fairly dense microstructure with nanosized grains. The films deposited on silicon were annealed at temperatures of 700°C, and the films deposited on sapphire were annealed at 900°C in an electrical furnace. The annealed film was detached and cracks were generated due to the high residual compressive stress and thermal stress induced by thermal expansion coefficient mismatch. However, the film deposited using powder containing 2% of excess PbO showed no cracking or detachment from the substrate after the postannealing process. The PbO evaporation at elevated temperature during the postannealing process seemed to have reduced the residual compressive stress. The remanent polarization and relative dielectric constant of the 50 μm thick films annealed at 900°C were 43.1 μC/cm2 and 1400, respectively, which were comparable with the values of a bulk specimen prepared by a powder sintering process.  相似文献   

17.
The effects of the residual stress (either compressive or tensile) induced during the heat-treatment process on the electrical properties of Pb(Zr0.52Ti0.48)O3 (PZT) films were investigated. The PZT films were deposited on platinized silicon substrates by the rf-magnetron sputtering method using a single oxide target. After their deposition, the films were bent elastically by means of a specially designed fixture during the annealing process. Residual stress was induced in the film by removing the substrate from the fixture after annealing. The ferroelectric and piezoelectric properties of the films were markedly changed by the residual stresses; the remnant polarization ( P r) and saturation polarization ( P sat) increased when a compressive stress was induced. On the other hand, the piezoelectric properties increased when a tensile stress was induced in the film.  相似文献   

18.
Zn–Mn–Ni–Oxide-based NTC thermistors with variable Ni/Mn ratios were fabricated from powder mixtures of recycled IZC, and commercial MnCO3 and NiCO3. Solid phases and electrical resistivity of each sintered sample were studied as a function of Ni/Mn ratio, sintering temperature and sintering time. At 1200 °C for 2 h, samples with the Ni/Mn ratios of 0.38 and higher were found to consist of cubic spinel as a major phase. After sintering at 1250 °C for 10 h, densification proceeded with a phase change from cubic spinel to tetragonal one. The electrical resistivity of the samples obtained at 1200 °C for 2 h progressively decreased with an increasing Ni/Mn ratio up to 0.38, at which the value became the lowest (4.2 × 103 Ω cm at room temperature) of all the samples fabricated.  相似文献   

19.
孙佳欣  周炳卿 《硅酸盐通报》2021,40(7):2396-2400
氮化硅SiNx薄膜凭借介电常数高和稳定性好的特点而被广泛应用于光电器件中,但薄膜的厚度对器件的性能有重要影响。针对此问题采用等离子体化学气相沉积技术,以高纯NH3、N2和SiH4为反应气体,优化其他沉积参数,通过改变沉积时间来生长SiNx薄膜。用X射线衍射谱(XRD),紫外-可见光光谱(UV-VIS)、傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对薄膜结构进行表征,详细研究了沉积时间与薄膜厚度的关系以及沉积时间对薄膜性能的影响。试验结果表明:所制备的样品为非晶SiNx薄膜结构,薄膜厚度随沉积时间均匀增加;薄膜折射率随沉积时间的增加而增大,光学带隙基本不随时间变化。SEM测试结果表明,随着沉积时间增加,薄膜致密性与均匀性越来越好,氧含量也越来越少,说明薄膜致密性提高可以有效阻挡O原子进入薄膜,阻止后氧化现象的发生。  相似文献   

20.
PbZr0.52Ti0.48O3 thick films with thickness of 1–6 μm have been prepared by a polymer-assisted MOD process. The polymer, poly(vinyl acetate) (PVAc) was introduced into PZT precursor solutions. The grain size increased from 30 nm to 100 nm with an increase of the additive amount of PVAc. Meanwhile, the grains grew larger (in a range of 100–500 nm) and the surface of the films became rougher with increasing film thickness. This promotes the structural relaxation and prevents cracking formation. The critical thickness at which the film begins to crack increases significantly. The dielectric constant and remanent polarization (Pr) increased from 1070 to 1490 and from 36.1 μC/cm2 to 52.4 μC/cm2, respectively, and the coercive field (Ec) decreased from 57.3 kV/cm to 41.3 kV/cm as the film thickness increased from 0.95 μm to 6.02 μm. PZT thick films prepared in this study are promising materials for MEMS applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号