共查询到17条相似文献,搜索用时 78 毫秒
1.
《数字社区&智能家居》2008,(Z1)
提出了一种在线手绘草图识别的用户建模方法。该方法首先利用用户输入笔划的速率和曲率特性进行笔划特征点抽取和笔划分段,从而将用户的输入草图分解成基本图元表示;进而,利用决策树收集和记录用户输入草图的时序信息,实现对复杂手绘草图的用户建模和在线识别,并通过对用户输入模式使用频率的统计实现对用户模型的动态管理和更新。实验表明:该方法不仅能显著提高复杂图形的识别效率,而且具有在线训练能力。 相似文献
2.
在线草图识别中用户手绘习惯建模方法 总被引:5,自引:0,他引:5
手绘草图是概念设计和思路外化的一种高效的表达方式。用户绘制草图时存在的多种形式,及其随意性和模糊性使得用户适应性问题逐渐成为草图识别的核心课题。本文提出了一种在线草图识别的用户建模方法来捕捉绘制草图时的用户习惯,主要包括两个方面的内容:一是基于SVM的主动式增量学习方法,二是基于动态用户建模的手绘复杂图形的识别方法。前者与传统的增量式学习方法相比,在识别精度相同的情况下所需的训练时间和训练数据集要少得多。后者则是基于笔划信息以及笔划间的顺序和空间关系信息,采用增量式决策树捕捉用户的输入习惯和过程信息。实验证明了本文方法在在线草图识别中的有效性和高效性。 相似文献
3.
4.
基于SVM增量学习的用户适应性研究 总被引:3,自引:3,他引:3
1.引言人机交互技术(Human-Computer Interaction,HCI)是一门新兴的边缘学科,在近十几年内迅速形成并得到发展。人机交互是对于人、计算机技术以及它们相互影响方式的研究,其目的是为了使计算机技术更加适合于人。用户意图预测(User Intention Prediction)是智能化人机交互的关键所在。对一个多用户系统而言,不同的用户具有不同的特性或习惯, 相似文献
5.
基于用户建模的手绘草图识别 总被引:1,自引:0,他引:1
在线草图识别包括预处理、特征提取、图形规整和用户建模等几个方面的问题。其中用户建模是手绘草图识别的核心和关键问题。提出了一种在线草图识别用户建模方法,方法用动态用户建模技术进行笔划和复杂图形的识别。方法采用增量决策树记录草图的笔划构成及其手绘过程,实现对复杂手绘草图的用户建模和在线识别。实验表明所提出的方法不仅能得到较好的检索结果,而且具有较好的用户适用性 相似文献
6.
一个面向构思的手绘草图识别系统 总被引:4,自引:1,他引:4
手绘图形输入是用户设计意图的一种自然有效的表达方式。本文介绍了一个手绘图形识别系统-SketchEI。SketchEI由五个部分构成:用户交互、输入预处理、图形识别器、草图管理器以及用户适应性。SketchEI把它们有机地组合在一起并且给出了一个相对完整的手绘图形识别技术理论体系。 相似文献
7.
8.
支持向量机(SVM)是一种基于统计学习理论的机器学习与模式识别方法。它通过结构风险最小化准则和核函数方法.较好地解决了小样本、非线性及高维模式识别问题。本文主要从联机手绘草图编辑的角度出发,谈谈支持向量机在草绘手势笔划识别中的具体应用。 相似文献
9.
10.
支持向量机(SVM)是一种基于统计学习理论的机器学习与模式识别方法。它通过结构风险最小化准则和核函数方法,较好地解决了小样本、非线性及高维模式识别问题。本文主要从联机手绘草图编辑的角度出发,谈谈支持向量机在草绘手势笔划识别中的具体应用。 相似文献
11.
支持向量机(SVM)是由Vapnik等人提出的一类新型机器学习方法,此方法利用较少的训练样本就可以达到比较理想的识别效果。本文应用SVM对手写数字字符集进行识别,结果表明了该方法在小字符集脱机手写体识别中的实用性。 相似文献
12.
针对同步在线草图识别算法中的效率和应用范围问题,提出基于增量式意图提取的识别算法.算法通过定义滞后窗口,采用增量式意图提取的方式理解用户的勾画意图,进而根据当前信息修正以前生成的意图段落,使得识别结果和用户的勾画意图保持一致.实验证明,该算法能够准确、实时地识别用户输入的多种图形. 相似文献
13.
针对真实环境下的语种识别,信道类型和通话内容等非语种方面因素的不同都会造成测试和训练条件的不匹配, 从而影响系统的识别性能.本文以音素识别器后接向量空间模型(Phone recognizer followed by vector space model, PRVSM)为语种识别系统,引入联合自适应算法来解决系统中测试和训练条件的失配问题.研究了三种自适应方法用于系统的不同阶段: 1)基于受约束的最大似然线性回归(Constrained maximum likelihood linear regression, CMLLR)的声学模型自适应; 2)基于全局N元文法的音位特征向量自适应; 3) VSM模型中的支持向量机(Support vector machines, SVM)自适应.在综合采用多种自适应技术后, PRVSM系统的性能有了较大的提高,在NIST LRE 2009测试库上对于30s、10s和3s的测试段, 基于不同音素识别器的PRVSM系统的等错误率(Equal error rate, EER)分别相对降低了18%~23%、12%~20%以及5%~9%. 相似文献
14.
本文研究了一种支持向量机(SVM)和基于转换的错误驱动学习相结合的汉语组块识别方法。SVM在选取特征方面有突出的优点,并且在高维特征空间也具有较高的泛化性能,通过核函数的原则,SVM能够在独立于训练数据维数的小计算范围内进行训练。利用基于转换的错误驱动学习方法对SVM的标注结果进行校正,转换规则较好地处理了语言现象中的
的特殊情况,进一步提高了SVM的识别结果。实验结果表明,该方法具有较好的效果。 相似文献
的特殊情况,进一步提高了SVM的识别结果。实验结果表明,该方法具有较好的效果。 相似文献
15.
基于类分布的领域自适应支持向量机 总被引:2,自引:0,他引:2
现有的领域自适应方法在定义领域间分布距离时, 通常仅从领域样本的整体分布上考虑, 而未对带类标签的领域样本分布分别进行考虑, 从而在一些具有非平衡数据集的应用领域上表现出一定的局限性. 对此, 在充分考虑源领域样本类信息的基础上, 基于结构风险最小化模型, 提出了基于类分布的领域自适应支持向量机(Domain adaptation support vector machine based on class distribution, CDASVM), 并将其拓展为可处理多源问题的多源领域自适应支持向量机(CDASVM from multiple sources, MSCDASVM), 在人造和真实的非平衡数据集上的实验结果表明, 所提方法具有优化或可比较的模式分类性能. 相似文献
16.
17.
支持向量机 (Support vector machine, SVM) 在语种识别中已经起到了重要的作用.近些年来,极限学习机 (Extreme learning machine, ELM) 在很多领域取得了成功的应用.相比于 SVM, ELM 最大的优点在于极易实现、训练速度快,而且通常可以取得与 SVM 相近甚至优于 SVM 的识别性能. 鉴于 ELM 这些优异的特点,本文将 ELM 引入到语种识别中,并针对 ELM 由于随机初始化模型参 数所带来的潜在问题,提出了流形正则化极限学习机 (Manifold regularized extreme learning machine, MRELM) 算法.实验结果表明,在高斯超矢量(Gaussian supervector, GSV)特征空间上,相对于 SVM 基线系统,该算法对30秒语音的识别性能有明显的提升. 同时该算法也可以成功地应用到 i-vector 特征空间中,取得与当前主流的打分算法相近的识别性能. 相似文献