首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 84 毫秒
1.
聚苯胺/石墨导电复合材料的制备与表征   总被引:17,自引:0,他引:17  
根据石墨的层状结构,以可膨胀石墨(KP)或膨胀石墨(EP)为模板,应用原位聚合法成功制备了聚苯胺(PANi)石墨导电复合材料。通过FT-IR、XRD、SEM和电导率测量等手段表征了其结构和性能。结果表明,PANi/EP的电导率与单一组分相比,都有大幅度提高,而PANi/KP的电导率介于两组分之间,PANi/EP的电导率高于PANi/KP复合材料4-5倍。XRD证明,膨胀石墨与聚苯胺复合大大提高了聚苯胺的结晶度,改善了聚苯胺的结构缺陷。FT-IR表明聚苯胺的特征吸收峰发生了位移,表明KP或EP的表面官能团与聚苯胺之间发生了氢键或共轭作用。  相似文献   

2.
膨胀石墨/聚酯导电复合材料的制备与导电行为   总被引:1,自引:0,他引:1       下载免费PDF全文
采用熔融共混法制备了膨胀石墨 ( EG) /聚酯 ( PET) 导电复合材料。利用扫描电镜及电导率测试等研究了复合材料的制备方法对其结构形态和导电性能的影响。结果表明, EG与聚合物基体间的相互作用和机械剪切力使PET分子能够进入EG的片层和孔隙中 , 促进了导电网络的形成, 导致EG/PET复合材料具有较低的逾渗值, 仅为3. 14 %。环氧树脂 ( ER) 与EG间的强相互作用使其易于对EG插层和剥离, 使ER-EG/PET体系的逾渗值进一步降低到1. 80 %。运用统计逾渗理论分析了材料的导电机制。发现复合材料电导率的各向异性、复杂的微观结构以及在高于逾渗值仍存在隧道导电是临界指数高于普适值的主要原因。   相似文献   

3.
通过原位插层聚合制备了聚甲基丙烯酸甲酯/膨胀石墨纳米导电复合材料,其室温导电渗滤阈值约为3%(质量分数),当膨胀石墨的质量分数为8%时,室温电导率可高达60 S/cm。通过TEM、SEM观察了复合材料的形貌,用DSC测定其热力学性能并探讨了不同外加电压对PMM A/膨胀石墨纳米导电复合材料体积电导率的影响,同时研究了复合材料的拉伸强度。  相似文献   

4.
采用膨胀石墨(EG)对聚氯乙烯(PVC)进行改性研究,考察了EG含量和体系发泡与否对PVC/EG复合材料负温度系数(NTC)效应的影响。实验结果表明,PVC/EG复合材料的NTC效应随着EG含量的变化而变化,当EG含量低于渗流阈值(质量分数9%)时,复合材料的NTC效应灵敏度更高。在30~120℃的温度范围内,EG质量分数为4%时的未发泡和发泡PVC/EG复合材料的体积电阻率分别降低了3和4个数量级;相较未发泡的PVC/EG复合材料的NTC效应,发泡后的复合材料表现出更灵敏的NTC效应。PVC/EG复合材料在2个加热-冷却循环过程中表现出良好的NTC循环稳定性。并从材料内部结构观察分析了PVC/EG复合材料产生NTC效应的原因。  相似文献   

5.
利用超声作用制备纳米石墨微片(nano-Gs), 并采用混酸对其进行表面活化, 最后通过熔融共混法制备nano-Gs/聚氯乙烯(PVC)复合材料。通过FTIR、 SEM对nano-Gs的结构进行表征, 并研究了nano-Gs对nano-Gs/PVC复合材料导电性能和力学性能的影响。FTIR分析表明: nano-Gs经混酸处理后表面活性官能团含量明显升高, 并与PVC 分子链发生一定程度的氢键作用; SEM图片显示: nano-Gs 厚度为30~80 nm, 其微片宽度为4~20 μm, 在PVC 树脂基体中呈无规状均匀分布; 导电性能测试表明: 随着nano-Gs 含量升高, nano-Gs/PVC复合材料的体积电阻率呈非线性降低趋势, 最低为103 Ω·cm, nano-Gs 的逾渗阈值为10%(质量分数); 力学性能测试表明, 随着nano-Gs含量升高, nano-Gs/PVC复合材料的拉伸强度及缺口冲击强度均先升高后降低, nano-Gs质量分数为1%时, 复合材料的拉伸强度及缺口冲击强度均达到最大值, 相比纯PVC分别升高约14%和38%。   相似文献   

6.
在石墨掺杂量相对于苯胺的质量分数为3%的情况下,探究了复合材料的导电性随十二烷基苯磺酸钠用量的变化规律,得出当nSDBS/ nAn=1∶1时的电导率最高,同时探究了复合材料的导电性随盐酸浓度的变化规律,得出最佳 盐酸浓度为1.5mol/L;在固定SDBS用量的情况下,探究了复合材料的导电性随石墨用量的变化规律,得...  相似文献   

7.
石墨是近几年国内外研究的热点无机层状材料之一,它与聚合物有效复合形成的纳米复合材料是一类具有广阔应用前景的新型材料。从石墨的应用形式、聚合物基体的种类、复合材料的制备方法几个方面概述了聚合物/石墨导电纳米复合材料的研究进展及其发展趋势。  相似文献   

8.
通过改进的Hummers法制备了高氧化程度的氧化石墨(GO),再利用微波膨胀制备了石墨纳米薄片(wGO),并采用X射线能谱分析(EDS)、热重分析(TGA)、元素分析、红外分析对GO和wGO进行测试。结果表明,wGO中O含量较GO中明显减少,说明微波膨胀能还原GO,使其表面含氧基团减少;进一步采用X射线衍射(XRD)、原子力显微镜(AFM)对wGO的结构和形貌进行表征,表明微波法使GO层间距增大,剥离效果明显。利用溶液法原位聚合制备了wGO/聚氨酯弹性体(TPU)纳米复合材料,扫描电镜(SEM)观测显示,wGO在TPU基体中有良好的分散性;当wGO的质量分数为3%时,拉伸强度提高了116.1%;当其质量分数为2%时,导热性能和导电性能分别提高了72.4%和6个数量级。wGO/TPU纳米复合材料的微相分离程度更高,在室温下有更高的储存模量。  相似文献   

9.
10.
以丙烯腈/丁二烯/苯乙烯共聚物(ABS)为基体,不锈钢纤维(SSF)和石墨为混杂导电介质制备了ABS/不锈钢纤维/石墨0-1-3复合体系。采用动态机械分析(DMA)、数字万用表和旋转流变仪等研究了复合材料的导电渗流行为、流变渗流特性的关联性及在DMA多频应变模式-动态微力场下的阻温特性与导电机理。结果表明,石墨的加入可明显提高复合体系的渗流导电能力;复合体系的导电渗流与流变渗流的渗滤阀值相近,均约为15%;在动态交变微载荷下,电阻率强烈的依赖于振动频率和温度,随着温度的升高,出现电阻正温度效应(PTC)和电阻负温度效应(NTC);且频率越高,SSF含量越低,复合体系的 PTC转变温度越高。  相似文献   

11.
Chemical modification of poly(vinyl chloride) (PVC) by dehydrochlorination with ethanolic KOH is found to yield modified PVC with conjugated polyene sequence. The semiconducting nature of ethoxide-modified PVC is illustrated with temperature dependence of conductivity (σ). The relative ratios (r) of conductivity,σ modifiedpvc /σ unmodifiedpvc , are greater than unity in the temperature range 50° to 180°C,r being maximum in the vicinity of glass-transition temperature (T g).T g inferred from conductivity-temperature profiles is found to be greater for modified PVC relative to unmodified PVC, which is explicable in terms of restricted free rotation limiting segmental motion. For comparison with the conductivity andT g of ethoxide-modified PVC, LiCl-modified PVC and (aniline + S2O 8 2− )-modified PVC have also been studied.  相似文献   

12.
采用化学镀制备镀镍纳米石墨微片(Ni-nanoG), 对其进行制备工艺研究及结构表征, 旨在得到一种新型导电导磁填料。讨论了硫酸镍浓度、 次亚磷酸钠浓度、 温度、 pH值对石墨微片镀层的影响, 得出镀镍的最佳工艺。采用SEM、 XRD、 EDS对其结构进行了表征, 并用振动样品磁强计(VSM)测试了其磁性能。结果表明: 纳米石墨微片(nanoG)表面镀上了一层紧凑的金属镍。镍均匀分布在nanoG的表面和边界面上, 将nanoG包覆得较严实。 Ni-nanoG厚度约为150 nm。nanoG上镍的含量较高, 其质量分数大约为34.08%。Ni-nanoG的饱和磁化强度为71.2 A·m2·kg-1, 可以作为吸波隐身材料的新型功能型填料。   相似文献   

13.
Ultrafine fibers of chitosan/poly(vinyl alcohol)/poly(vinyl pyrrolidone) (CS/PVA/PVP) were prepared via electrospinning. The structure and morphology of CS/PVA/PVP ultrafine fibers was characterized by the Fourier transform infrared (FT-IR) spectroscope and scanning electron microscope (SEM). Furthermore, the effects of the concentration of PVA, PVP and the electrospinning voltage on the morphology of ultrafine fibers were investigated the the SEM. When the concentration of PVA was at the range of 30wt%–40wt%, ultrafine fibers could be obtained. The diameter distributions of ultrafine fibers decreased when the electrospinning voltage increased from 20 to 30 kV. The rough surface fibers could be obtained after etching with CHCl3.  相似文献   

14.
玻璃纤维化学镀Ni-Cu-P合金的研究   总被引:6,自引:0,他引:6  
李鹏  黄英  熊佳  王琦洁 《材料科学与工艺》2006,14(6):630-632,636
为制备新型吸波材料,用化学镀方法在玻璃纤维表面沉积了N i-Cu-P合金.用钯盐法测试镀液的稳定性、扫描电镜(SEM)观察镀层的表面形貌、X射线能谱仪(EDS)对镀层成分含量进行分析.研究发现:镀液稳定性好;镀层表面连续光滑,且镀合金玻璃纤维经热震实验后表面无鼓泡、起皮现象,说明镀层的结合力好;镀层中铜的质量含量最大可达12.99%,此时导电玻璃纤维的电阻率为4×10-4Ω.?.对N i-Cu-P合金玻璃纤维的电磁参数进行了初步的测定分析,所得导电玻璃纤维的介电损耗为0.825.  相似文献   

15.
玻璃纤维化学镀Ni-Fe-P合金的研究   总被引:10,自引:2,他引:8  
李鹏  黄英  熊佳  王琦洁 《功能材料》2005,36(2):263-266
通过化学镀方法在玻璃纤维表面沉积了Ni Fe P合金,所用镀液经钯盐法测试稳定性很好,所得镀合金玻璃纤维热震实验后表面无鼓泡、起皮现象,说明镀层的抗冲击强度高,结合力良好。并利用扫描电镜观察分析了镀层的表面形貌,同时使用 X射线能谱仪对镀层成分含量进行了测定分析,铁的质量百分含量最大可达 21.8%,并得出了镍含量、铁含量对镀层导电性能的影响情况,制备的镀合金玻璃纤维电阻率可为7.32×10-4Ω·cm。最后还对所得 Ni Fe P合金玻璃纤维的电磁参数进行了初步的测定分析,所得镀金属玻璃纤维的磁损耗为0.307;介电损耗为1.44。  相似文献   

16.
接枝共聚改性型医用聚氯乙烯   总被引:1,自引:0,他引:1  
本文对增塑剂渗出性小或亲水性、生物相容性优异的接技共聚改性医用聚氯乙烯的研究进展进行了综述  相似文献   

17.
为了研究氧化石墨烯(GO)对聚合物基复合材料力学性能的影响,通过溶液混合法制备了GO/聚乙烯醇(PVA)复合材料。然后,采用XRD、TEM、FTIR、DSC和纳米压痕实验等研究了GO/PVA复合材料的结构、界面结合性能、力学性能、蠕变行为和吸水膨胀率。结果表明:GO可以均匀分散在PVA基体中,二者之间主要通过氢键作用结合,具有较高的界面结合力;与纯PVA相比,1wt% GO/PVA复合材料的硬度和有效弹性模量分别提高了28.9%和23.3%,压入蠕变深度下降了19.8%;GO/PVA复合材料具有较低的无限剪切模量与瞬时剪切模量比,表明GO提高了PVA的蠕变抗力;GO的添加同时增加了GO/PVA复合材料的阻水性并降低了膨胀系数。吸湿纳米压痕实验结果表明:纯PVA的力学性能会随吸湿时间延长而下降,而GO/PVA复合材料吸湿72h后的力学性能基本保持不变。所得结论为石墨烯增强聚合物基复合材料的研究提供了理论指导。   相似文献   

18.
聚氯乙烯/聚醚砜共混小孔超滤膜的研制   总被引:4,自引:0,他引:4  
聚氯乙烯与聚醚砜属部分相容体系。采用溶胶-凝胶相转化法,改变聚合物共混比例、混合溶剂、添加剂用量,制备了一系列聚氯乙烯/聚醚砜(PVC/PES)共混超滤膜。通过调配铸膜液中聚合物共混比例,可大大提高共混膜的强度和韧性。其水通量和截留率与同类日本产高分子分离膜相比,均有较大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号